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ABSTRACT. We define super-Cayley graphs over a finite abelian group G. Using the theory of su-

percharacters on G, we explain how their spectra can be realized as a super-Fourier transform of a

superclass characteristic function. Consequently, we demonstrate that a super-Cayley graph is de-

termined by its spectrum once an indexing on the underlying group G is fixed. This generalizes a

theorem by Sanders-Sanders, which investigates the case where G is a cyclic group. We then use

our theory to define and study the concept of a U-unitary Cayley graph over a finite commutative

ring R, where U is a subgroup of the unit group of R. Furthermore, when the underlying ring is a

Frobenius ring, we show that there is a natural supercharacter theory associated with U. By applying

the general theory of super-Cayley graphs developed in the first part, we explore various spectral

properties of these U-unitary Cayley graphs, including their rationality and connections to various

arithmetical sums.

1. INTRODUCTION

Cayley graphs over finite commutative rings are widely studied in the literature. Examples in-
clude Paley graphs, unitary Cayley graphs, p-unitary Cayley graphs, involutory Cayley graphs,
cubelike graphs and various natural generalizations (see [1, 13, 16, 18, 25, 33, 34, 40]). We refer
the reader to [2, 22] and the extensive references therein for some surveys on this line of research.
These studies reveal that Cayley graphs defined over rings often have richer structures than those
defined over an abstract abelian group. In fact, in the former case, the interplay between the mul-
tiplicative and additive structures of the underlying ring plays a crucial role in the understanding
of the associated graphs. Quite naturally, ideals are fundamental in the analysis of these graphs
(see, for example [8, 29, 30, 40]). Furthermore, it is often the case that the underlying ring has a
simple spectral description, which enables us to explicitly describe the spectra of their associated
graphs via some classical arithmetical sums such as Gauss sums and Ramanujan sums (see, for
example, [11, 16, 25, 30, 33]).

In this article, we introduce the notion of U-unitary Cayley graphs that unifies various con-
structions in the literature, including all the graphs mentioned in the previous paragraph. Fur-
thermore, when the underlying ring is a Frobenius ring, we provide a concrete description for the
spectra of these generalized gcd-graphs. We achieve this by developing a theory of super-Cayley
graphs over an abstract finite abelian group G. It turns out that these spectra can be expressed as
certain super-Fourier transforms on the space of superclass functions on G. As a consequence of
this characterization, we show that a super-Cayley graph is determined by its eigenvalues once
we fix an indexing of superclasses of G. This is a direct generalization of [37, Theorem 1.2] for
classical gcd-graphs over the cyclic group G = Z /n. See [37, 38] for two different approaches
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to this theorem when G = Z /n, and [26] for a analogous version when G is a quotient of a
polynomial ring over a finite field.

We now summarize our main results. We refer the reader to the main text for precise state-
ments including the definitions of several mathematical terms. The first theorem concerns the
spectra of super-Cayley graphs defined over a finite abelian group.

Theorem 1.1. Let G be a finite abelian group. Let (K,X ) be a supercharacter theory on G. Let Γ(G, S)
be a super-Cayley graph associated with (K,S). Then, the following statements hold.

(1) The eigenvalues of Γ(R, S) are {λi} counted with multiplicity where λi = 1̂S(Ki). Here Ki is a
class in K, 1S is the characteristic function of S and 1̂S is its super-Fourier transform.

(2) If we fix an indexing of K, then Γ(R, S) is determined by its spectrum.

The next theorem applies the general results in Theorem 1.1 to the case where the underlying
group is a finite Frobenius ring. Here, we have more explicit results including the singularity and
rationality of the spectra of these super-Cayley graphs.

Theorem 1.2. Let R be a finite commutative Frobenius ring and U be a subgroup of R×. Then the follow-
ing statements holds.

(1) There exists a supercharacter theory (K,X ) associated with U.
(2) Let Γ(R, S) be a U-unitary Cayley graph. Then, the spectrum of Γ(R, S) can be explicitly ex-

pressed as a linear combination of several generalized Ramanujan sums.
(3) Let n be a positive integer such that nR = 0. Let T be a symmetric subset of R. Let K be a subfield

of Q(ζn), H1 the subgroup of Gal(Q(ζn)/ Q) = (Z /n)× associated with K under the Galois
correspondence, and U1 the image of H1 under the canonical map (Z /n)× → R×. Then Γ(R, T)
is K-rational if and only if it is U1-unitary.

(4) Let U = (R×)p where p is either 1 or a prime number which is invertible in U. Suppose further
that Γ(R, (R×)p) is both connected and anti-connected. Then, Γ(R, (R×)p) is prime if and only
if 0 is not an eigenvalue of Γ(R, R×).

We remark that we also prove various results about the connectedness and primeness of U-
unitary Cayley graphs. In addition, we discuss other examples related to Item 4. However, these
results are rather technical to state, and therefore we refer readers to the main text for the precise
statements.

1.1. Outline. We develop the theory of super-Cayley graphs in Section 2. In this section, we
show that the spectra of these graphs can be described as a super-Fourier transform of a super-
class characteristic function. In Section 3, we introduce the concept of U-unitary Cayley graphs
over a finite commutative ring. We discuss various graph-theoretic properties of these graphs,
including their connectedness and primeness. Finally, in Section 4, we apply the results from
Section 2 and Section 3 to the case where the underlying group is induced by the additive struc-
ture of a Frobenius ring. More precisely, we prove that there is a natural supercharacter theory
on R for each choice of U. Consequently, the spectra of these U-unitary Cayley graphs can be
expressed as super-Fourier transforms. We study various arithmetical properties of these spec-
tra, including their regularity and rationality. The later part significantly generalizes the results of
[28, 39] regarding integral graphs. Additionally, we pose a precise question about the relationship
between the primeness of a U-unitary Cayley graph and its spectra. In the last subsection, we
explore the connections between these super-Fourier transforms and certain arithmetical sums,
including Ramanujan sums, Gauss sums, and Heilbronn sums.
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2. SUPERCHARACTER THEORY AND SUPER-CAYLEY GRAPHS OVER AN ABELIAN GROUP

In this section, we discuss supercharacter theories of an abelian group G. We then apply this
theory to study certain Cayley graphs on G. In the next section, we will apply this general the-
ory to the case where G is isomorphic to (R,+) where R is a finite commutative ring. We first
recall the definition of a supercharacter theory for G (see [5, 9, 10].) We note that the theory of
supercharacter works for a general finite group including non-abelian one. However, since our
primary focus is on Cayley graphs on rings, we will concentrate on the case where G is abelian.
We also remark that we add one additional condition for a supercharacter theory, which we will
show to be important for later parts.

Definition 2.1. Let G be a finite abelian group. Let K = {K1, K2, . . . , Km} be a partition of G and
X = {X1, X2, . . . , Xm} a partition of the dual group Ĝ = Hom(G, C×) of characters of G. We say
that (K,X ) is a supercharacter theory for G if the following conditions are satisfy

(1) {0} ∈ K;
(2) |X | = |K|;
(3) For each Xi ∈ X , the character sum

σi = ∑
χ∈Xi

χ

is constant on each K ∈ K;
(4) In this paper, as it will be clear later, we add one more condition to (K,X ); namely for a

fixed X ∈ X the sum ∑k∈Ki
χ(k) does not depend on the choice of χ ∈ X.

Since our goal is to study the Cayley graphs with respect to the pair (K,X ), we will further
assume that K is symmetric; namely Ki = −Ki for each 1 ≤ i ≤ m.

Remark 2.2. It is unclear to us whether condition 4 in Definition 2.1 is a consequence of other
conditions. Conditions 3 and 4 are somewhat related to the concept on semimagic squares (in [23,
Corollary 2.1.2], we show that a normal matrix with constant row sums must also have constant
column sums.)

As in [10], we will denote by σi = ∑χ∈Xi
χ and by σi(Kj) the value of σi at an element of Kj.

Similarly, we will write

Ωj(χ) = ∑
k∈Kj

χ(k),

where χ is a character of G. Furthermore, since Ωj is constant when evaluated by elements in Xi,
we will denote by Ωj(Xi) the value Ωj(χ) for an arbitrary χ ∈ Xi. We have the following duality.

Proposition 2.3. For each 1 ≤ i, j ≤ m we have

Ωj(Xi)|
|Kj|

=
σi(Kj)

|Xi|
.

Additionally, if K is symmetric, we also have

Ωj(Xi)| = Ωj(Xi)|.

Proof. We have

∑
χ∈Xi

∑
k∈Kj

χ(k) = ∑
χ∈Xi

 ∑
k∈Kj

χ(k)

 = |Xi|Ωj(Xi).
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Similarly

∑
χ∈Xi

∑
k∈Kj

χ(k) = ∑
k∈Kj

[
∑

χ∈Xi

χ(k)

]
= |Kj|σi(Kj).

This shows that |Xi|Ωj(Xi) = |Kj|σi(Kj). For the second statement, since Kj = −Kj, we have

Ωj(Xi) = ∑
k∈Kj

χi(k) = ∑
k∈Kj

χi(−k) = ∑
k∈Kj

χi(k) = Ωj(Xi).

□

We will fix a supercharacter theory (K,X ) for G throughout this section. Let S be a symmetric
subset of G; namely S = −S and 0 ̸∈ S. The Cayley graph Γ(G, S) is the graph whose vertex set
is G and two vertices u, v ∈ G are adjacent if u − v ∈ S. Once we fix the pair (K,X ), it is natural
to consider Cayley graphs associated with it. Specifically, in what follows, we will define and
develop a spectral theory for super-Cayley graphs for (K,X ). We first formally introduce this
definition.

Definition 2.4. A Cayley graph Γ(G, S) is called a super-Cayley graph with respect to the pair
(K,X ) if the generating set S is a union of some classes in K.

We have the following observation.

Proposition 2.5. Suppose that Γ(G, S) is super-Cayley graph. Then, the complement of Γ(G, S) is also a
super-Cayley graph.

Proof. The complement of Γ(G, S) is precisely Γ(G, Sc) where Sc = G \ ({0} ∪ S). Since S is a
union of some classes in K and {0} ∈ K, Sc is a union of some classes in K as well. We conclude
that the complement of Γ(G, S) is a super-Cayley graph. □

We now discuss spectra of super-Cayley graphs. By the circulant diagonalization theorem for
finite abelian groups (see [17]), the spectrum of a Cayley graph Γ(G, S) is given by the family{

∑
s∈S

χ(s)

}
χ

,

where χ runs over the dual group Ĝ := Hom(G, C×) of all characters of G. When Γ(G, S) is a
super-Cayley graph, we can write

∑
s∈S

χ(s) = ∑
Kj⊂S

∑
s∈Kj

χ(s) = ∑
Kj⊂S

Ωj(χ).

By this computation, we have the following proposition.

Proposition 2.6. Let Γ(G, S) be a super-Cayley graph. Then, the spectrum of Γ(G, S) is the multiset
{[λi]|Xi |}1≤i≤m where

λi = ∑
Kj⊂S

Ωj(Xi).

Consequently, Γ(G, S) has at most m distinct eigenvalues.

We will now show that, similar to the classical theory, the eigenvalues {λi}1≤i≤m described in
Proposition 2.6 can be realized as a super-Fourier transform. To achieve this goal, we recall some
basic background in the representation theory of finite groups. First, we remark that the space of
complex valued functions f : G → C is equipped with the following natural inner product

(2.1) ⟨ f1, f2⟩ =
1
|G| ∑

g∈G
f1(g) f2(g).

4



An important feature of σi is that they are constant in superclasses. For this reason, it is natural
to consider functions with a similar property (see [5, 10]).

Definition 2.7. A function f : G → C is called a superclass function if f is constant on each
superclass in {K1, K2, . . . , Km}. We will denote by f (Ki) the value of f at arbitrary element e ∈ Ki

(by definition, this does not depend on the choice of e.) The space of all superclass functions with
respect to the pair (K,X ) will be denoted by S .

The space S naturally inherits the inner product described in Eq. (2.1). For f1, f2 ∈ S , their
inner product can be rewritten as

(2.2) ⟨ f1, f2⟩ =
1
|G|

m

∑
ℓ=1

|Kℓ| f1(Kℓ) f2(Kℓ).

As explained in [5], {σi}n
i=1 forms an orthogonal basis for the space of superclass functions.

More precisely, we have the following orthogonal relations

⟨σi, σj⟩ = |Xi|δi,j.

Because {σi} forms a basis for S , each f ∈ S can be written as a linear combination of {σi}1≤i≤m;
namely

(2.3) f =
m

∑
ℓ=1

f̂ (Kℓ)σℓ.

The map F : S → S given by f 7→ f̂ is called the non-normalized discrete Fourier transform of f
(see [5, Equation 3.1].) This map F is an automorphism of S since f and f̂ determine each other.
In fact, using the orthogonality relations on {σi}1≤i≤m, we have

|Xi| f̂ (Ki) = f̂ (Ki)⟨σi, σi⟩ = ⟨ f , σi⟩ =
1
|G|

m

∑
ℓ=1

|Kℓ| f (Kℓ)σi(Kℓ).

By Proposition 2.3, we know that |Kℓ|σi(Kℓ) = |Xi|Ωℓ(Xi) and Ωj(Xi)| = Ωj(Xi)|. As a result,
we conclude that

(2.4) f̂ (Ki) =
m

∑
ℓ=1

f (Kℓ)Ωℓ(Xi) =
m

∑
ℓ=1

f (Kℓ)Ωℓ(Ki).

We are now ready to state our claim that the spectrum of Γ(G, S) can be realized as a discrete
Fourier transform.

Theorem 2.8. Let Γ(G, S) be a super-Cayley graph. Let 1S be the characteristic function of S and
{[λi]|Xi |}1≤i≤m the spectrum of Γ(G, S) as described in Proposition 2.6. Then for each 1 ≤ i ≤ m

λi = 1̂S(Ki).

We have the following corollary, which is a direct generalization of [37, Theorem 1.2].

Corollary 2.9. S is uniquely determined by the system of eigenvalues {λi}1≤i≤m.

Proof. This follows from the fact that the super-Fourier transform map F : S → S is an isomor-
phism. □
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3. U-UNITARY GRAPHS

3.1. Definition and examples. Let R be a finite commutative ring and S be a symmetric subset
of R; namely S = −S and 0 ̸∈ S. In the previous section, we study Cayley graphs over a finite
abelian group. In this section, we apply this general theory to study Cayley graphs on (R,+).
More precisely, we are interested in a class of Cayley graphs Γ(R, S) over R where the generating
set S has an arithmetic origin. Previous works in the literature have explored the case S is the
subgroup of invertible elements (see [1, 19]), the subgroup of p-powers (see [29, 34, 33]), the
solutions of some algebraic equations (see [18]), and some natural generalizations (see [8, 25, 30]).
In those cases, S and hence Γ(R, S) often have some additional symmetries that make them more
interesting to study.

To start our discussion, we fix a subgroup U of R× such that −1 ∈ U (this will ensure that
all relevant generating sets are symmetric). The Cayley graph Γ(R, U) is introduced in [8] in
the context of prime Cayley graphs. More precisely, in that work, we provide the necessary and
sufficient conditions for this graph to be prime (see [8, Theorem 4.1]). We now introduce the
concept of generalized gcd-graphs over R.

Definition 3.1. Let S be a symmetric subset of R. We say that Γ(R, S) is a generalized U-unitary
Cayley graph if S is stable under the action of U; namely US = S.

We remark that Definition 3.1 unifies various concepts in the literature. In the following, we
discuss some of them.

Example 3.2. Let R = Z/p where p is a prime number of the form 4k + 1. Let ρ : (Z /p)× → C×

be a quadratic character modulo p given by the Legendre symbol; namely ρ(m) =
(

m
p

)
. Let U

be the kernel of ρ, that is,

U = {m | ρ(m) = 1.}

The Cayley graph Γ(R, U) is known as a Paley graph. These Paley graphs have a rich history in
mathematics, first appearing implicitly in Paley’s 1933 work [32] on Hadamard matrices. Inter-
estingly, Carlitz independently rediscovered them in a different mathematical context [6]. The
significance of Paley graphs in the field is perhaps best summarized by Gareth A. Jones in [15],
who noted:

Paley graphs and their automorphism groups are inevitable encounters for any-
one deeply engaged in the study of algebraic graph theory or finite permutation
groups.

In general, if R is a finite commutative ring and ρ : R → C is a multiplicative character (see [8,
Section 4.2]), we can define the generalized Paley graph Pρ as the Cayley graph Γ(R, ker(ρ)). The
case R is the ring of integers modulo a positive integer n is considered in [25]. There, using the
theory of Ramanujan and Gauss sums, we describe explicitly the spectra of these Paley graphs.
Furthermore, using properties of the L-function attached to ρ, we provide some estimates on the
Cheeger numbers of Pχ.

Example 3.3. If U = R×, then a U-unitary Cayley graph is exactly a gcd-graph as described in
[19, 30, 39]. These gcd-graphs generalize the class of unitary Cayley graphs (corresponding to the
case S = R×), which have been a subject of interdisciplinary research since the pioneering work
of Klotz and Sanders. For example, see [4, 36, 39] for some research directions related to these
unitary Cayley graphs.
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Example 3.4. Let U = (R×)p if p is an odd positive integer and U = ±(R×)p if p is even. The
Cayley graph Γ(R, U) is known as a p-unitary Cayley graph. As explained in various work such
as [33, 35], these graphs have found applications in solving various Diophantine problems over
finite fields. We note that the case p = 2 gives a generalization of the classical Paley graph (see
[13, 21] for some investigations regarding these graphs over an arbitrary finite commutative ring).

Example 3.5. Let U ⊂ R× be the set of elements x ∈ R such that x2 = 1. The graph Γ(R, U) is
called an involutory Cayley graph (see [18]).

Example 3.6. Let R = (Z /2)m, where m is a positive integer. Then R× = (1, 1, . . . , 1), so every
subgroup U of R× is trivial. As a result, Γ(R, S) is a U-unitary Cayley graph for all choices of S.
This type of graph is known as a cubelike graph in the literature (see [7]).

We now discuss some structural properties of U-unitary Cayley graphs. Expanding on Jones’
observation in Example 3.2, we remark that for a general U-unitary Cayley graph Γ(R, S), there
is a natural group homomorphism from U to the group of automorphisms of Γ(R, S).

Proposition 3.7. Let Γ(R, S) be a U-unitary graph. Then the natural action of U on R induces an
automorphism on Γ(R, S).

Proof. Since U is a group and S is stable under U, for each u ∈ U, the multiplication by u is an
automorphism of Γ(R, S).

□

We now provide some concrete criteria for a Cayley Γ(R, S) to be a U-unitary graph. Let
K = {K1, K2, . . . , Km} be the orbits of R under the action of U. By definition, two elements x, y
belong to the same orbit if and only if x = uy for some u ∈ U. Additionally, we know that S is
stable under the action of U if and only if S is a union of some classes in K. In summary, we have
the following characterization of U-unitary Cayley graphs.

Proposition 3.8. The following conditions are equivalent.

(1) Γ(R, S) is a U-unitary graph.
(2) For each orbit Ki where 1 ≤ i ≤ m, if S ∩ Ki ̸= ∅ then Ki ⊂ S.
(3) S is a disjoint union of some orbits Ki.

Using an argument identical to Proposition 2.5 we have the following.

Proposition 3.9. Suppose that Γ(R, S) is an U-unitary Cayley graph. Then its complement is also a
U-unitary Cayley graph.

3.2. Connectedness of U-unitary Cayley graphs. In this section, we study the connectedness
of a U-unitary Cayley graph. We recall that Γ(R, S) is connected if and only if S generates R
as an abelian group. We note that, for connectedness, we only need the additive structure of R.
However, as we soon see, the multiplicative structure also plays an implicit but fundamental role.
This fact echos our earlier comment in the introduction that Cayley graphs over a ring often has
richer structure.

We introduce the following convention: for each 1 ≤ i ≤ m, let Ii be the ideal generated by an
element of x ∈ Ki (by definition of Ki, Ii is independent of the choice of x).

Proposition 3.10. Let Γ(R, S) be a U-unitary Cayley graph. Suppose that Γ(R, U) is connected. Then
the following conditions are equivalent.
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(1) Γ(R, S) is connected.
(2) R = ∑i Ii where the sum is over all ideals Ii such that S ∩ Ki ̸= ∅.

Furthermore, if one of these conditions are satisfied, then

diam(Γ(R, S)) ≤ diam(Γ(R, U))t.

Here t is the smallest positive integer in which there exists i1, i2, . . . , it such that R = ∑t
s=1 Iis and

S ∩ Kis ̸= ∅.

Proof. The proof for this statement is almost identical to the one given in [30, Proposition 3.1].
For the sake of completeness, we provide the details below.

We first shows that (1) =⇒ (2). In fact, since Γ(R, S) is connected, we can write 1 = ∑i aisi,
where ai ∈ Z and si ∈ S. By definition of Ii, we know that ∑i aℓsℓ ∈ ∑i Ii. This shows that
1 ∈ ∑i Ii, which implies that R = ∑i Ii. Conversely, suppose that (2) holds. We will show that
diam(Γ(R, S)) ≤ diam(Γ(R, U))t. This will particularly show that Γ(R, S) is connected. In fact,
let r ∈ R. Since R = ∑t

s=1 Iis , we can write r = ∑t
s=1 ais xis , where xis ∈ Ki and ais ∈ R. Fur-

thermore, since Γ(R, U) is connected, each ais can be written as a sum of at most diam(Γ(R, U))

elements in U. Since each Kis is stable under the action of U, this shows that r can be written as
a Z-linear combination of at most diam(Γ(R, U))t elements in S. By definition, diam(Γ(R, S)) ≤
diam(Γ(R, U))t.

□

Remark 3.11. Here, for simplicity, we assume that Γ(R, U) is connected. This condition is not
always satisfied. We refer the reader to [1, Section 3] and [30, Theorem 3.6] for an extensive
analysis of Proposition 3.10 in the maximal case; namely U = R×.

We also remark that the case U = (R×)p where p is a positive number that is invertible in R
is treated in [34]. In this case, the connectedness of Γ(R, (R×)p) is directly related to the classical
Waring problem. The more general case is treated in [29].

3.3. Primeness of U-unitary Cayley graphs. A subset X in a graph G is called a homogeneous
set if every vertex in V(G) \ X is adjacent to either all or none of the vertices in X. Note that
X = V(G) as well as all vertex sets of size at most one are homogeneous sets. A homogeneous
set X with 2 ≤ X < |V(G)| is called non-trivial. The graph G is said to be prime if it does
not contain any non-trivial homogeneous sets. We remark that the study of homogeneous sets
is essentially equivalent to the problem of decomposing a graph G into smaller subgraphs (see
[3, 8]). The later problem is a central problem in network theory and it has found applications to
dynamics of phase oscillators in networked systems (see [14, 27]).

In this section, we study the conditions for a U-unitary Cayley graph Γ(R, S) be prime. Note
that since a connected component of a graph is always a homogeneous set, we can safely assume
that Γ(R, S) is connected and anti-connected (meaning that its complement is connected). We
have the following proposition which is a direct generalization of [8, Theorem 4.1].

Proposition 3.12. Suppose that Γ(R, U) is connected. Suppose further that Γ(R, S) is both connected
and anti-connected. Then, the following conditions are equivalent.

(1) Γ(R, S) is not a prime graph.
(2) There exists a proper ideal I; namely I ̸= 0 and I ̸= R, in R such that I is a homogeneous set in

Γ(R, S).

Proof. This statement can be proved using an identical argument as explained in [8, Theorem 4.1].
For the sake of completeness, we briefly sketch it here.
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By [8, Theorem 3.4], if I is a maximal non-trivial homogeneous set of Γ(R, S) containing 0, then
H is a subgroup of (R,+). We claim that I is an ideal in R as well. By Proposition 3.7, we know
that if u ∈ U, then the multiplication by u is an automorphism of Γ(R, S). Consequently, uI is
also a homogeneous set. Since 0 ∈ H ∩ sH, we conclude that H ∪ sH is also a homogeneous set.
By the maximality of H, we must have uH = H. We claim if r ∈ R, then rH = H. In fact, since
Γ(R, U) is connected, we can write r = ∑d

i=1 miui, where mi ∈ Z and ui ∈ U. For each h ∈ I, we
have rh = ∑d

i=1 mi(uih). Since uih ∈ I and I is a subgroup of (R,+), we conclude that rh ∈ I.
This shows that I is an ideal in R. □

We discuss some conditions on the existence of an ideal which is simultaneously a homoge-
neous set in Γ(R, S). First, we remark that an ideal I in R is necessarily stable under the action of
S. Therefore, I is a union of various orbits Ki.

Proposition 3.13. Suppose that I is an ideal which is also a homogeneous set in Γ(R, S). Let K ∈
{K1, K2, . . . , Km} be an orbit. Then the following properties hold

(1) If K ⊂ S and K ̸⊂ I then K + I ⊂ S.
(2) If K ̸⊂ S and K ̸⊂ I then K + I ⊂ R \ S.

Conversely, if I is an ideal satisfying both the above conditions then I is a homogeneous set in Γ(R, S).

Proof. We will provide a proof for (1) since (2) follows from an identical argument (we can also
use the fact that if I is a homogeneous set in Γ(R, S), then I is also a homogeneous set in its
complement, which is also a U-unitary Cayley graph by Proposition 3.9).

Suppose that K ⊂ S and K ̸⊂ I. Let k ∈ K. Since k is adjacent to 0, it is adjacent to all vertices
in I. This show that for each m ∈ I, k is adjacent to −m (since −m ∈ I). By definition, this shows
that k + m ∈ S. Because this is true for all k ∈ K and m ∈ I, we conclude that K + I ⊂ S.

The converse statement follows directly from the definition of a homogeneous set. □

In particular, when S = U, since U ∩ I = ∅, we have the following corollary, which is first
proved in [8].

Corollary 3.14. (see [8, Proposition 4.4, Proposition 4.7]) Suppose that I is an ideal which is also a
homogeneous set in Γ(R, U). Then I + U = U. Furthermore, I is a nilpotent ideal in R.

Remark 3.15. The condition that U + I = U is equivalent to a weaker condition; namely 1+ I ⊂ U.
In fact, if I + U = U then clearly 1 + I ⊂ U since 1 ∈ U. Conversely, suppose that 1 + I ⊂ U. Let
u ∈ U and m ∈ I, we claim that u + m ∈ U. In fact, we can rewrite u + m = u(1 + u−1m). Since
u−1m ∈ I, we know that 1 + u−1m ∈ U. Since U is a group, u(1 + u−1m) belongs to U as well.

4. SUPPERCHARACTER THEORY OF A FROBENIUS RING AND APPLICATIONS TO SPECTRA OF

U-UNITARY CAYLEY GRAPHS

4.1. Supercharacter theories of a finite Frobenius ring. In Section 3, we show that for each
choice of U ⊂ R×, there is a natural partition of R into superclasses. Namely, these superclasses
are precisely the orbits of R under the natural action of U. In order to apply the results for graph
spectra in Section 2, we also need a compatible partition of the dual group of (R,+). While it
is unclear how to achieve this in full generality, there is a class of rings in which such a parti-
tion naturally exists; namely the class of finite commutative Frobenius rings. It is worth noting
that many rings with arithmetic origins are Frobenius rings. Examples include finite fields, finite
quotients of Dedekind domains, finite chain rings, and the group ring of an abelian group with
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coefficients in a finite field. In [30], we show that every finite commutative ring is a quotient of a
Frobenius ring. We also provide various constructions of Frobenius ring extensions.

We now fix a Frobenius ring R. As explained in [12, 31], being Frobenius means that R is a
Z /n algebra equipped with a non-degenerate Z /n linear functional ψ : R → Z /n. Here, non-
degenerate means that the kernel of ψ does not contain any non-zero ideal in R. Let ζn := e

2πi
n be

a fixed primitive n-root of unity and χ : R → C× be the character defined by χ(a) = ζ
ψ(a)
n . By [28,

Proposition 2.4], the dual group Hom(R, C×) is a cyclic R-module generated by χ; namely every
character of R is of the form χr where χr(a) = χ(ra). By definition, the following identity holds
for all x, y ∈ R.

χx(y) = χy(x) = χxy(1) = χ(xy).

We now show that each subgroup of R× gives rise to a supercharacter theory for R.

Theorem 4.1. Let U be a subgroup of R× such that −1 ∈ U. Let K = {K1, K2, . . . , Km} be the orbits of
R under the action of U. Additionally, let X = {X1, X2, . . . , Xm} be the partition of the character group
of R defined by

Xi = {χx | x ∈ Ki}.

Then the pair (K,X ) is a symmetric supercharacter theory for R. Furthermore, (K,X ) satisfies Condition
4 in Definition 2.1.

Proof. The first conditions are Definition 2.1 are automatic. For the third and fourth conditions,
we adopt the following convention. For each y ∈ R, we denote by Ky (respectively Xy) the class
Ki (respectively Xi) such that Ki contains y. By definition, Ksy = Ky and Xsy = Xy for each s ∈ U.
Fix a set of representatives {r1, r2, . . . , rm} for {K1, K2, . . . , Km}. With this convention, we have
σi(rj) = ∑χ∈Xxi

χ(rj). Let r′j be an arbitrary element in Kj. Then r′j = srj for some s ∈ U. We then
have

σi(r′j) = ∑
χ∈Xxi

χ(srj) = ∑
x∈Xxi

χ(sxrj) = ∑
x∈Xxi

χsx(rj) = ∑
χ∈Xsxi

χ(rj) = ∑
χ∈Xxi

χ(rj) = σi(rj).

This shows that σi is constant on Kj for each 1 ≤ j ≤ m. In other words, the third condition
in Definition 2.1 is satisfied. By a similar argument, we can check that the fourth condition in
Definition 2.1 is satisfied as well.

Finally, since −1 ∈ U, Ki = −Ki for each 1 ≤ i ≤ m. By definition, (K,X ) is symmetric. □

We now discuss several properties of this supercharacter theory which generalize various re-
sults in [5].

Proposition 4.2. Let U be a subgroup of R× and (K,X ) the supercharacter theory associated with U as
described in Theorem 4.1. Keeping the same notation as in the proof of Theorem 4.1. Then the following
relations hold

(1) Ωj(Xi) = σj(Ki).
(2) We have

σi(Xj)|Kj| = σj(Xi)|Ki|.

Note that this identity is a natural generalization of [5, Lemma 1].
(3) Let f : R → C be a superclass function. Let f̂ be the non-normalized super-Fourier transform of

f described in Eq. (2.3). Then Eq. (2.4) can be rewritten as

f̂ (Ki) =
m

∑
ℓ=1

f (Kℓ)σℓ(Ki) =
m

∑
ℓ=1

f (Kℓ)σℓ(Ki).
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In other words

f̂ =
m

∑
ℓ=1

f (Kℓ)σℓ.

We remark that this formula is a generalization of [5, Equation 3.2].
(4) Let S be the space of all superclass functions on R associated with (K,X .) Let F : S → S be the

super-Fourier transform. Then F 2( f ) = |R| f for all f ∈ S .

Proof. Let us prove the first statement. By definition, we have

Ωj(Xi) = ∑
x∈Kj

χri (x) = ∑
x∈Kj

χx(ri) = ∑
χ∈Xj

ri = σj(Ki).

This proves the first statement. The second statement follows from the first part, Proposition 2.3,
and the fact that |Ki| = |Xi| and |Kj| = |Xj|. The third statement is a consequence of the first
statement and the formula for f̂ described in Eq. (2.4). Finally, last statement follows from an
identical to the one given in [5]. □

We now discuss a method to systematically calculate σℓ(Ki). To do so, we introduce the fol-
lowing convention. Let Vx (respectively Ux) be the kernel (respectively the image) of U under the
canonical map R× → (R/AnnR(x))×. Here, for each subset M ⊂ R, AnnR(M) is the annihilator
ideal of M; namely

AnnR(M) = {y ∈ R | yM = 0}.

We remark that R/AnnR(x) is a Frobenius ring and χx is one of its generating characters (see
[30, Lemma 4.3]). For convenience, we introduce the following notation.

Definition 4.3. Let φ ∈ R̂ = Hom(R, C×) be an additive character of R. The generalized Ra-
manujan sum c(R, U, φ) is defined as follows

c(R, U, φ) = ∑
u∈U

φ(u).

Remark 4.4. When U = R× and φ = χg then c(R, U, χg) is precisely the Ramanujan sum c(g, R)
introduced in [30, Definition 4.8].

We have the following proposition, which shows that σℓ(Ki) can be calculated via a Ramanujan
sum of certain quotient ring of R.

Proposition 4.5.

σℓ(Ki) =
|Urℓ |
|Urℓrj |

∑
u∈Urℓrj

χrlri (u) =
|Urℓ |
|Urℓrj |

c(R/Annrℓri (R), Urℓri , χrℓri ).

Proof. For each x ∈ R, let Stab(x) is the stabilizer of x. We then have

Stab(x) = {u ∈ U|ux = u} = {u ∈ U|(u − 1) ∈ AnnR(x)} = Vx.

By the stabilizer theorem, we have |Kx||Vx| = |U| and hence

|Stab(x)| = |Vx| =
U
|Ux|

.

As a result, for x, y ∈ R we have

∑
χ∈Kx

χx(y) =
|Kx|
|U| ∑

u∈U
χux(y) =

|Kx|
|U| ∑

u∈U
χxy(u).
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Consequently, we have

σℓ(Ki) =
|Urℓ |
|U| ∑

u∈U
χrℓri (u) =

|Urℓ |
|U|

|U|
|Urℓri |

∑
u∈Urℓ ri

χrℓri (u) =
|Urℓ |
|Urℓri |

c(R/Annrℓri (R), Urℓri , χrℓri ).

□

4.2. Applications to U-unitary Cayley graphs. In this section, we use the results developed in
the previous parts to study U-unitary Cayley graph. By Theorem 4.1, we know that U gives
rises to a supercharacter theory (K,X ). Furthremore, by definition, an U-unitary Cayley graph
is precisely a super-graph with respect to this supercharacter theory. By Proposition 2.6, Propo-
sition 2.3, and Proposition 4.5 we have the following.

Theorem 4.6. Let Γ(R, S) be a U-unitary Cayley graph. Then, the spectrum of Γ(R, S) is the multiset
{[λri ]|Kr |}

m
i=1. Here

λri = 1̂S(Ki) = ∑
Kℓ⊂S

Ωℓ(Xi) = ∑
Kℓ⊂S

σℓ(Ki) = ∑
Kℓ⊂S

|Urℓ |
|Urℓrj |

c(R/Annrℓri (R), Urℓrj , χrℓri ).

In particular, Γ(R, S) has at most m distinct eigenvalues. Furthermore, S is determined by the m-
dimensional vector (λri )

m
i=1.

4.2.1. Rationality of the spectra of U-unitary Cayley graphs. A graph is called integral if all of
its eigenvalues are integers. In [28], we classify all integral Cayley graphs defined over a finie
Frobenius ring. We provide here a slight generalization.

Proposition 4.7. Let Γ(R, S) be an U-unitary Cayley graph. Let H be the preimage of U under the
canonical map (Z /n)× → R×. Then the eigenvalues of Γ(R, S) belong to the fixed field Q(ζn)H . In
particular, if H = (Z /n)× then all eigenvalues of Γ(R, S) are integers. In other words, Γ(R, S) is an
integral graph.

Proof. By Proposition 2.6, we know that the spectrum of Γ(R, S) is the multiset {λr}r∈R where
λr = ∑s∈S χr(s). We remark also that λr ∈ Q(ζn). Furthermore, the Galois group Gal(Q(ζn)/ Q)

is precisely (Z /n)×. More precisely, there exists an isomorphism Φ : (Z /n)× → Gal(Q(ζn)/ Q)

defined by a 7→ σa where σa is defined by the rule σa(ζn) = ζa
n. Extending σa by linearity, we can

see that for each character χr of R, we have σa(χr) = χar. Let h ∈ H, then we have

h(λr) = ∑
s∈S

h(λr(s)) = ∑
s∈S

λr(hs) = ∑
s∈S

λr(s).

The last equality follows from the fact that S is stable under the action of U and hence is also
stable under the action of H. This shows that λr belongs to the fixed field Q(ζn)H for each r ∈ R.

□

We study the converse of Proposition 4.7. The naive guess does not quite work as a graph
could be both U1-unitary and U2-unitary for two different U1, U2. For example, if Γ(G, S) is U-
unitary then it is also U1-unitary for any subgroup U1 of U. To avoid this tautological issue, we
introduce the following definition.

Definition 4.8. A Cayley graph Γ(R, S) is called purely U-unitary if Γ(R, S) is not a U′-unitary
Cayley graph for some U′ ⊂ R× such that U ⊊ U′.

The following lemma says that the induced action described above is the only way for a purely
U-unitary Cayley graph to have a different unitary structure.
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Lemma 4.9. Let Γ(R, S) be a purely U-unitary Cayley graph. Suppose that Γ(R, S) is also a U1-unitary
Cayley graph. Then U1 ⊂ U.

Proof. By definition, S is stable under the action of U1 and U. Consequently, it is stable under
the action of the product U1U. Since Γ(R, S) is purely U-unitary, we must have U1U ⊂ U. This
implies that U1 ⊂ U2. □

Corollary 4.10. Let Γ(R, S) be a Cayley graph. Then, there exists a unique subgroup U ⊂ R× such that
Γ(R, S) is purely U-unitary.

Proof. Let us define
U = {u ∈ R× | uS = S.}.

We can check that U is a subgroup of R×. Furthermore, by definition of U we know that US = S.
Therefore, we conclude that Γ(R, S) is U-unitary. Let U1 be a subgroup of R× such that S is U1-
unitary. Then, for each u1 ∈ U1, we must have u1S = S. By definition of U, we know that u1 ∈ U.
Therefore, U1 ⊂ U. We conclude that Γ(R, S) is purely U-unitary.

□

With these setups, we now generalize Corollary 4.14 to a broader statement concerning the
rationality of the spectra of Γ(R, S). We formally introduce the following definition.

Definition 4.11. Let K be a subfield of C . A graph G is called K-rational if all eigenvalues of G
belong to K. Note that a graph is integral if and only if it is Q-rational.

We begin with the following observation, which extends [28, Theorem 2.7]. Although the
argument we present is similar to those in [28, 39], we will explain it within the context of super-
character theory on R.

Theorem 4.12. Let T be a symmetric subset of R and Γ(R, T) the Cayley graph associated with T. Let
K be a subfield of Q(ζn) and H1 the group associated with K under the Galois correspondence; namely
K = Q(ζn)H1 . Then, the following conditions are equivalent

(1) Γ(R, T) is K-rational.
(2) Γ(R, T) is an U1-unitary Cayley graph where U1 is the image of H1 in R× under the canonical

map (Z /n)× → R×.

Proof. By Proposition 4.7 we know that (2) =⇒ (1). Let us show that 1) =⇒ (2).
Let (K1,X1) be the supercharacter theory associated with U1. In particular, let K1 = {O1, O2, . . . , Os}

be the orbits of R under the action of U1. Let vi ∈ K|R| be the characteristic vector of Oi; namely

vi[r] =

1, if r ∈ Oi

0, if r ̸∈ Oi.

By definition, v1, v2, . . . , vd are linearly independent over K. Let V be the K-vector space gener-
ated by the vi’s.

Let AR = (χr(t))r,t be the DFT matrix associated with R (see [17]). Let us also define

A = {v ∈ K|R| | ARv ∈ K|R|}.

We first claim that V ⊂ A. In fact, let v ∈ V . Then v can be written as a K-linear combination of
vi; namely v = ∑d

i=1 aivi. We then have ARv = ∑d
i=1 ai ARvi. Let σa ∈ Gal(Q(ζn)/ Q) with a ∈ H1.

Since σ(ai) = ai, we have

σa(AR(v)) =
d

∑
i=1

aiσa(ARvi).
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By definition

σa(ARvi) =

(
σa( ∑

s∈Oi

χr(s))

)
r∈R

=

(
∑

s∈Oi

χr(as)

)
r∈R

=

(
∑

s∈Oi

χr(s)

)
r∈R

.

The last equality follows from the fact that each Oi is stable under the multiplication by a ∈ H1.
Next, we claim that if w ∈ A then ARw ∈ V . Let w = (wt)t∈R ∈ K|R| and ARw = (ur)r∈R. Because
w ∈ A, ur ∈ K for all r. By definition

ur = ∑
t∈R

χr(t)wt.

We claim that if r1, r2 belong to the same equivalence class then ur1 = ur2 . In fact, since r1, r2

belong to the same equivalence class, we can find a ∈ H1 such that ar1 = r2. We then have

ur1 = σa(ur1) = ∑
t∈R

χar1(t)σa(wt) = ∑
t∈R

χr2(t)wt = ur2 .

In summary, we have V ⊂ A, ARA ⊂ V . Furthermore, since AR is invertible, we must have
A = V .

We recall that the eigenvalues of Γ(R, T) are precisely AR1T where 1T is the characteristic
vector of T. By our assumptions, there eigenvalues belong to K, we conclude that T ∈ V . This
shows that T is a unions of some classes in K1. In other words, Γ(R, S) is U1-unitary.

□

Theorem 4.13. Let Γ(R, S) be a purely U-unitary Cayley graphs. Let K, H1, U1 be as in Theorem 4.12.
Suppose further that K is the smallest subfield of Q(ζn) such that Γ(R, S) is K-rational. Then, U1 = U.

Proof. By Theorem 4.12, since Γ(R, S) is K-rational, it is U1-unitary. Because Γ(R, S) is purely
U-unitary, Lemma 4.9 implies that U1 ⊂ U.

Conversely, let H be the preimage of U in Z /n×. Proposition 4.7 implies that Γ(R, S) is
Q(ζn)H-rational. Because K is the smallest subfield where Γ(R, S) is K-rational, we must have
Q(ζn)H1 ⊂ K := Q(ζn)H . By the Galois correspondence, we have H ⊂ H1. We conclude that
U ⊂ U1 and hence U1 = U.

When K = Q, we have the following simple corollary. □

Corollary 4.14. Suppose that Γ(R, S) is an integral graph. Suppose further that Γ(R, S) is purely U-
unitary. Let H be as in Proposition 4.7. Then H = (Z /n)×.

4.3. Primeness and eigenvalue 0. In [8, Corollary 4.3], we show that if the Cayley graph Γ(R, U)

is not prime, then 0 is an eigenvalue with multiplicity at least |R|
2 . The argument given there is

graph theoretic in nature. Our reformulation of the eigenvalues allows us to provide a more
concrete statement.

Proposition 4.15. Suppose that I is a non-zero ideal and a homogeneous set in Γ(R, U). Let r ∈ R such
that r /∈ AnnR(I). Then λr = 0. Consequently, 0 is an eigenvalue of Γ(R, S) with multiplicity at least
|R|
(

1 − 1
|I|

)
, which is at least |R|

2 .

Proof. By Proposition 3.13 we know that U + I ⊂ U. Consequently, for cardinality reasons, m +

U = U for each m ∈ I. Let r ∈ R such that r ̸∈ AnnR(I). This shows that rI is a non-zero ideal of
R. Because χ is non-degenerate, there exists m ∈ I such that χ(rm) = χr(m) ̸= 1. We then have

λr = ∑
u∈U

χr(u) = ∑
u∈U

χr(m + u) = χr(m) ∑
u∈U

χr(u) = χr(m)λr.

Because χr(m) ̸= 1, we conclude that λr = 0.
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Since I is a non-zero ideal in R, AnnR(I) is a proper ideal of R as well. In fact, by [12, Theorem
1], we have the following identity |I||AnnR(I)| = |R|. This shows that the set R \ AnnR(I) has
exactly |R|(1 − 1

|I| ) elements. In particular, this show that λr = 0 for at least |R|
2 values of r. □

In many examples that we study, the converse of Proposition 4.15 is also true. For this reason,
we propose it as an open question for further investigation.

Question 4.16. Suppose that Γ(R, U) is both connected and anti-connected. Is it true that Γ(R, U)

is prime if and only 0 is not an eigenvalue?

We provide some partial answers for Question 4.16.

Proposition 4.17. Suppose that U = R×. Suppose that Γ(R, R×) is connected and anti-connected. Then,
Γ(R, R×) is prime if and only if 0 is not an eigenvalue of Γ(R, R×).

Proof. One direction follows from Proposition 3.13 and Proposition 4.15. Let us now prove the
converse; namely if Γ(R, R×) is prime then 0 is not an eigenvalue of Γ(R, R×). In fact, by [8,
Theorem 4.34], R must be a product of fields. Consequently, Γ(R, R×) is a tensor product of
complete graphs. As a result, their eigenvalues are non-zero (see also [1, Propsition 10.2]). □

Remark 4.18. As noted in [8], the condition at that Γ(R, R×) is both connected and anti-connected
is important. In fact, if we take R to be a field then Γ(R, R×) is a complete graph which is not
prime unless |R| = 2. However, in this case, its eigenvalues are |R| − 1 and −1 which are not
zero.

We discuss another instant where we can prove Question 4.16.

Proposition 4.19. Let R be a Fp-algebra. Let U ⊂ R× such that p ∤ |U|. Then, the following statements
hold

(1) 0 is not an eigenvalue of Γ(R, U).
(2) There is no non-zero ideal I such that I is a homogeneous set in Γ(R, S). In particular, if Γ(R, U)

is connected and anti-connected then Γ(R, U) is prime.

In particular, if R is a field then these statements hold.

Proof. For the first statement, we need to show that if r ∈ R then λr = ∑u∈U χr(u) ̸= 0. By
definition

∑
u∈U

χr(u) = ∑
u∈U

ζ
ψr(u)
p =

p−1

∑
ℓ=0

 ∑
ψr(u)=ℓ

ζℓp,

 =
p−1

∑
ℓ=0

aℓζℓp.

Here ψ : R → Fp is the non-degenerate Fp-linear function on R is described at the beginning of
this section and aℓ is the number of u ∈ U such that ψr(u) = ℓ. Assuming that λr = 0. Then
we must have a0 = a1 = . . . = ap−1. This would imply that |U| = ∑

p−1
ℓ=0 aℓ = pa0 which is a

contradiction.
Let us prove the second statement. By Proposition 3.13, we know that I +U ⊂ U. In particular,

we have 1+ I ⊂ U. By Corollary 3.14, I is a nilpotent ideal. Since R has characteristics p, for each
m ∈ I we have (1 + m)p = 1 + mp. This shows that 1 + I is a p-group. Since p ∤ |U|, this is
impossible. □

Here is another example where can verify Question 4.16. This is an example of generalized
Paley graph which we will discuss in more details in Section 4.4.3. Here, we focus on a particular
case which is discussed in [24].
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Proposition 4.20. Let m be a positive integer such that all prime divisors of m are of the form 4k + 1. Let
ρ : R := (Z /m) → C be the multiplicative character defined by Jacobi symbol ρ(a) =

( a
m
)

(see [24]).
Let U = ker(ρ) = {u ∈ (Z /m)× | ρ(u) = 1}. The following conditions are equivalent

(1) m = m0 where m0 = rad(m) where rad(m) is the product of all distinct prime divisors of m.
(2) 0 is not an eigenvalue of Γ(Z /m, U).
(3) Γ(Z /m, U) is a prime.

Proof. By the definition of ρ, ρ is periodic modulo m0; namely ρ(a) = ρ(a + m0). As a result, m0R
is a homogeneous set in Γ(R, U) by Proposition 3.13. This shows that (3) =⇒ (1). Furthermore,
by Proposition 4.15, we know that (2) =⇒ (1). Let us show that (1) =⇒ (2). In fact, if m = m0,
then the eigenvalues of Γ(R, U) are calculated in [24, Theorem 3.5], which are all non-zero. Let us
now show that (1) =⇒ (3). First, since 1 ∈ U, we know that Γ(R, U) is connected. Furthermore,
by the Chinese remainder therem, there exists a ∈ R× such that ρ(a) = −1 and hence a ̸∈ U. This
shows that the complement of Γ(R, U) is also connected. Suppose to the contrary that Γ(R, U) is
not prime. Then by Proposition 3.12 and Corollary 3.14, there exists a non-zero nilpotent ideal I
such that 1 + I ⊂ U. However, since m0 = m, there are no non-zero nilpotent ideals in R. This
leads to a contraction. We conclude that Γ(R, U) must be prime. □

Finally, we discuss the answer for Question 4.16 for p-unitary Cayley graphs.

Proposition 4.21. Let p be a prime number and R a finite Frobenius ring such that p is invertible in R.
Let U = (R×)p. Let GR(p) be the p-unitary Cayley graph Γ(R, U). Suppose that GR(p) is connected
and anticonnected. Then, the following statements are equivalent

(1) Γ(R, U) is prime.
(2) R is a product of fields.
(3) 0 is not an eigenvalue of Γ(R, U).

Proof. We will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
Let us first show that (1) =⇒ (2). Let R = R1 × R2 × . . . × Rd be the factorization of R into

a product of local rings. By [29, Proposition 3.1], we know that the Jacobson radical of R is a
homogeneous set in Γ(R, U). Consequently, if Γ(R, U) is prime then Rad(R) = 0. In other words,
R must be a product of fields.

Let us now show that (2) =⇒ (3). In fact, in this case, GR(p) is isomorphic to the tensor
products of GRi (p). Since Ri is a field, Ui = (R×

i )
p satisfies the conditions of Proposition 4.19. As

a result, all eigenvalues of GRi (p) are non-zero. This shows that all eigenvalues of Ri are non-zero
as well.

Finally, Proposition 3.12 and Proposition 4.15 show that (3) =⇒ (1). □

4.4. Some examples. We discuss various examples of well-known U-unitary Cayley graphs over
a a finite Frobenius ring with a fixed generating character χ. In particular, we explain the rela-
tionship between their spectra and various arithmetical sums.

4.4.1. Gcd-graphs. The case U = R× is considered in various works such as [1, 19, 30]. In this
case, the generalized Ramanujan sum defined in Definition 4.3 can be explicitly calculated. More
precisely, in [30, Theorem 4.14], we show that

c(R, R×, χ) = c(g, R) =
φ(R)

φ(R/AnnR(g))
µ(R/AnnR(g))

We note that this sum is independent of the choice of the generating character χ (since two gen-
erating characters differ by a scaling by an unit in R.)
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4.4.2. p-unitary Cayley graphs. Let U = (R×)p where p is a positive integer. In this case, the
graph Γ(R, U) is called a p-unitary Cayley graph (see [29, 33, 35].) In this case, the generalized
Ramanujan sum c(R, U, a) is related to the Heilbronn sum which we now recall.

Definition 4.22. Let p be a prime number. For each a ∈ (Z /p2) The Heilbronn sum Ha(p) is
defined as follow

Hp(a) =
p−1

∑
ℓ=1

e
2πiaℓp

p2

By [11, Lemma 3.1], we know that for R = (Z /p2), {ℓp}p−1
ℓ=1 is a set of representative for

U = (R×)p. Furthermore, if we let χ be the generating character of Z /p2 defined by χ(a) = e
2πia
p2 ,

then we can rewrite
Hp(a) = ∑

u∈U
χa(u) = c(Z /p2, U, χa).

In summary, we have the following.

Proposition 4.23. Let R = (Z /p2). Then the spectrum of the U-unitary Cayley graph Γ(R, U) is
precisely the multiset {Ha(p)}a∈R of Heilbronn sums.

4.4.3. Paley graphs. We recall that the Paley graph Pρ is U-unitary Cayley graph Γ(R, U) with

U = ker(ρ) = {u ∈ R× | ρ(u) = 1}.

Here ρ : R× → C× is a multiplicative character.

Definition 4.24. (See [20, Definition 1]) Let ρ : R× → C× is a multiplicative character and φ : R →
C× an additive character of R. Following a standard convention, we extend ρ to be a function
ρ : R → C by the rule that ρ(a) = 0 if a ̸∈ R×. The Gauss sum τ(ρ, φ) is defined to be

τ(ρ, φ) = ∑
r∈R×

ρ(r)φ(r) = ∑
r∈R

ρ(r)φ(r).

Definition 4.25. We say that ρ has order d if ρd(u) = 1 for all u ∈ R×.

Proposition 4.26. Suppose that ρ has degree d. Then, Pρ is K-rational where K is a number field of degree
at most d.

Proof. Let H be as in Proposition 4.7. Then H is the kernel of the induced Dirichlet character
ρ : (Z /n)× → µd ⊂ C×. Consequently, the fixed field K = Q(ζn)H has degree at most d.
Furthermore, by Proposition 4.7, we know that Pρ is K-rational. □

Proposition 4.27. Suppose that ρ : R× → C× is a multiplicative character of order d. Let U = ker(ρ).
Then, the characteristic function of U is given by

1U(a) =
1
d

1 − ρ(a)d

1 − ρ(a)
ρ(a) =

1
d

d

∑
i=1

ρi(a).

Proof. By definition, ρ(a) = 0 or ρ(a)d = 1. Consequently, we have

1
d

1 − ρ(a)d

1 − ρ(a)
ρ(a) =

1 if ρ(a) = 1

0 else.

We conclude that 1U(a) =
1
d

1 − ρ(a)d

1 − ρ(a)
ρ(a) for all a ∈ R. □

We can describe the Ramanujan sums in Definition 4.3 via Gauss sums (see [25, Theorem 3.5]
for an explicit calculation in the case ρ is a quadratic character modulo n).
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Proposition 4.28. Let φ : R → C be an additive character of R and ρ : R× → C a multiplicative
character of order d. Let c(R, ker(ρ), φ) be the generalized Ramanujan sum described in Definition 4.3.
Then

c(R, ker(ρ), φ) =
1
d

d

∑
i=1

τ(ρi, φ).

Proof. By definition, we have

c(R, ker(ρ), φ) = ∑
u∈ker(ρ

φ(u) = ∑
u∈R

1U(a)φ(u) = ∑
u∈R

[
d

∑
i=1

1
d

ρi(u)

]
φ(a)

=
1
d

d

∑
i=1

∑
u∈R

ρi(u)φ(u) =
1
d

d

∑
i=1

τ(ρi, φ).

□
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