Perfect state transfer on gcd-graphs over a finite Frobenius ring

Tung T. Nguyen and Nguyen Duy Tân

Elmhurst University

2025 Workshop on Matrices and Operators Department of Mathematics, University of Regina, Canada.

What is a graph?

A (undirected) graph is an ordered pair G = (V, E) where

- V is a finite set whose elements are called vertices,
- E is a set of paired vertices.

Suppose the vertex set of G is $\{v_1, v_2, \dots, v_n\}$. A convenient way to represent G is to use its adjacency matrix $A = A_G = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{else.} \end{cases}$$

With this presentation, we can then use tools from matrix theory, representation theory, and number theory to study the structure of G.

An Erdős-Rényi random graph

Figure 1: A random graph on n = 5 nodes

$$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

The adjacency matrix of this graph.

Graph spectra

• The spectrum of G, denoted by $\operatorname{Spec}(G)$, is the set of all eigenvalues of its adjacency matrix A. Equivalently, it is the set of all roots of the characteristic polynomial $p_A(t)$ of A where

$$p_A(t) = \det(tI_n - A).$$

- Let K be a subfield of \mathbb{C} . A graph is called K-rational if $\lambda \in \mathcal{O}_K$ for each $\lambda \in \operatorname{Spec}(G)$ where \mathcal{O}_K is the ring of integers in K.
- A Q-rational graph is often called an integral graph.

Perfect state transfer on graphs

Definition

Let F(t) be the continuous-time quantum walk associated with G; namely $F(t) = \exp(iA_G t)$. There is perfect state transfer (PST) in graph G if there are distinct vertices A and A a positive real number A such that A is A in the such that A in the such that A is A in the such that A in the such that A is A in

Perfect state transfer on graphs

Definition

Let F(t) be the continuous-time quantum walk associated with G; namely $F(t) = \exp(\mathrm{i} A_G t)$. There is perfect state transfer (PST) in graph G if there are distinct vertices a and b and a positive real number t such that $|F(t)_{ab}| = 1$.

The adjacency matrix of K_2 is

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Perfect state transfer on graphs

Definition

Let F(t) be the continuous-time quantum walk associated with G; namely $F(t) = \exp(iA_G t)$. There is perfect state transfer (PST) in graph G if there are distinct vertices a and b and a positive real number t such that $|F(t)_{ab}| = 1$.

The adjacency matrix of K_2 is

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$F(t) = \cos(t)I + i\sin(t)A = \begin{bmatrix} \cos(t) & i\sin(t) \\ i\sin(t) & \cos(t) \end{bmatrix}.$$

and hence

$$F\left(\frac{\pi}{2}\right) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

This shows that there is PST between u and v at $t = \frac{\pi}{2}$.

Cayley graphs over a finite commutative ring

In general, the classification of PST on a graph is a difficult problem. However, for certain <u>arithmetic</u> graphs, this problem is more tractable.

Definition

Let R be a finite commutative group and S is a subset of R. The Cayley graph $G = \Gamma(R,S)$ is the graph with the following data

- \bullet V(G) = R.
- $a, b \in V(G)$ are adjacent if $a b \in S$.

In practice, the definition of S often involves the multiplicative structure of R.

Integral Cayley graphs

Theorem (Godsil)

Suppose that there is PST on G.

- **①** *G* is *K*-rational where *K* is either \mathbb{Q} or a quadratic extension of \mathbb{Q} .
- **2** If G is regular, then it is \mathbb{Q} -rational.
 - We can classify all integral Cayley graphs defined over R
 (works of Godsil-Spiga, So, Nguyen-Tân). More on this later.
 - The classification of Cayley graphs with PST seems to be a much harder problem.

The Circulant Diagonalization Theorem

Let G be a Cayley graph defined over $R = \mathbb{Z}/3$. The adjacency matrix of G is a 3×3 matrix of the form

$$C = \begin{pmatrix} c_0 & c_1 & c_2 \\ c_2 & c_0 & c_1 \\ c_1 & c_2 & c_0 \end{pmatrix}.$$

Let ω_3 be 3-root of unity; namely $\omega_3^3 = 1$. Then we have

$$C\begin{pmatrix} 1\\ \omega_3\\ \omega_3^2 \end{pmatrix} = \begin{pmatrix} c_0 + c_1\omega_3 + c_2\omega_3^2\\ c_2 + c_0\omega_3 + c_1\omega_3^2\\ c_1 + c_2\omega_3 + c_0\omega_3^2 \end{pmatrix} = \begin{pmatrix} (c_0 + c_1\omega_3 + c_2\omega_3^2)1\\ (c_0 + c_1\omega_3 + c_2\omega_3^2)\omega_3\\ (c_0 + c_1\omega_3 + c_2\omega_3^2)\omega_3^2 \end{pmatrix}.$$

We see that $(1, \omega_3, \omega_3^2)^t$ is an eigenvector of C associated with the eigenvalue $c_0 + c_1\omega_3 + c_2\omega_3^2$.

The Circulant Diagonalization Theorem

More generally we have the following theorem.

Theorem (Circulant Diagonalization Theorem)

Let $G = \Gamma(R, S)$ be a Cayley graph. Then, the spectrum of G is precisely the multiset

$$\{\lambda_{\chi} = \sum_{s \in S} \chi(s)\}_{\chi \in \widehat{R}},$$

here $\widehat{R} = \operatorname{Hom}(R, \mathbb{C}^{\times})$ is the dual group of R considered as an abelian group.

The spectrum of G is precisely the Discrete Fourier Transform of the indicator vector of S.

Finite Frobenius rings

Let n be the characteristic of R and let $\zeta_n:=e^{\frac{2\pi \mathrm{i}}{n}}$ be a primitive root of unity.

Definition

A finite commutative ring R is called Frobenius if there exists a \mathbb{Z}/n -functional $\psi: R \to \mathbb{Z}/n$ such that $\ker(\psi)$ does not contain any non-zero ideal in R.

• For each $r \in R$, define $\chi_r \in \widehat{R}$ by the rule

$$\chi_r(s) = \zeta_n^{\psi(rs)}.$$

• The fact that $\ker(\psi)$ does not contain any non-zero ideal in R implies that the map $R \to \widehat{R}$ defined by $r \mapsto \chi_r$ is an isomorphism. In other words, R is canonically self-dual.

Finite Frobenius rings

Some examples of finite Frobenius rings.

- $R = \prod_n \mathbb{Z} / n$. Consequently, each finite abelian group is isomorphic to a (R, +) where R is a finite Frobenius ring.
- R is a finite quotient of \mathcal{O}_K where K is a finite extension of \mathbb{Q} or $\mathbb{F}_q(t)$.
- If R is Frobenius and H is an abelian group then R[H] is also Frobenius.
- Every finite commutative ring is a quotient of a finite Frobenius ring.

Spectra of Cayley graphs over a finite Frobenius ring

- Let $G = \Gamma(R, S)$ be a Cayley graph defined over R.
- For each $r \in R$, we define

$$\vec{v_r} = \frac{1}{\sqrt{|R|}} [\zeta_n^{\psi(rs)}]_{s \in R}^T \in \mathbb{C}^{|R|}, \lambda_r = \sum_{s \in S} \zeta_n^{\psi(rs)}.$$

Then v_r is a normalized eigenvector of A_G with λ_r being the corresponding eigenvalue.

• Let $V = [v_r]_{r \in R} \in \mathbb{C}^{|R| \times |R|}$, $D = \operatorname{diag}([\lambda_r]_{r \in R})$. Then we can write

$$A_G = VDV^* = \sum_{r \in R} \lambda_r \vec{v_r} \vec{v_r}^*,$$

Therefore, we have

$$F(t) = \sum_{r \in R} e^{i\lambda_r t} \vec{v}_r \vec{v}_r^*.$$

PST on Cayley graphs over a finite Frobenius ring

• Let $s_1, s_2 \in R$. Then

$$F(t)_{s_1,s_2} = \frac{1}{|R|} \sum_{r \in R} e^{i\lambda_r t} \zeta_n^{\psi((s_1-s_2)r)}$$
$$= \frac{1}{|R|} \sum_{r \in R} e^{2\pi i \left(\lambda_r \frac{t}{2\pi} + \frac{\psi((s_1-s_2)r)}{n}\right)}.$$

- By the triangle inequality, $|F(t)_{s_1,s_2}|=1$ if and only if $\lambda_r \frac{t}{2\pi} + \frac{\psi(s_1-s_2)r}{n}$ are the same modulo 1 for all $r \in R$.
- By symmetry, there exists perfect state transfer between s₁ and s₂ if and only if there exists perfect state transfer between 0 and s₂ s₁.

PST on Cayley graphs over a finite Frobenius ring

In summary, we have the following.

Theorem (Nguyen-Tân, Bašić-Petković-Stevanović)

Let $G = \Gamma(R, S)$ be a Cayley graph defined over a finite Frobenius ring. There exists perfect state transfer from 0 to s at time t if and only if for all $r_1, r_2 \in R$

$$(\lambda_{r_1}-\lambda_{r_2})\frac{t}{2\pi}+\frac{\psi(s(r_1-r_2))}{n}\in\mathbb{Z}.$$

Corollary

Let Δ be the abelian group generated by $r_1 - r_2$ where r_1 and r_2 are elements of R such that $\lambda_{r_1} = \lambda_{r_2}$. Then $\psi(sd) = 0$ for all $d \in \Delta$. In particular, if $\Delta = R$ then there is no PST on $\Gamma(R, S)$.

Gcd-graphs over a Frobenius ring

Definition

A Cayley graph $\Gamma(R, S)$ is called a gcd-graph if S is stable under the action of R^{\times} .

- We can show that S is stable under the action of R^{\times} if and only if there exists a subset $D = \{x_1, x_2, \dots, x_k\}$ of non-associate elements in R with the property that: for each $s \in R$, $s \in S$ if and only if $sR = x_iR$ for some $x_i \in D$.
- Gcd-graphs over a finite quotient of \mathbb{Z} were introduced by Klotz-Sander. They described the spectra of these graphs using the theory of Ramanujan sums $c_m(n)$ where

$$c_n(m) = \sum_{\substack{1 \le j \le n \\ \gcd(j,n) = 1}} \zeta_n^{mj}.$$

Various generalizations to more general rings:
 Thongsomnuk-Meemark (for a principal ideal ring) and
 Nguyen-Tân (for a general commutative ring).

An example

Figure 2: The gcd-graph $G_f(D)$ with $f = x(x+1) \in \mathbb{F}_3[x]$ and $D = \{x, x+1\}$

Gcd-graphs over a Frobenius ring

- In practice, it is often the case that S is only stable under the action of a proper subgroup U of R[×]. We call these graphs U-unitary Cayley graphs.
- In this case, the spectra of these graphs can be described by generalized Ramnujan sums, which can be further explained by the supercharacter theory on R associated with U (work of Nguyen-Tân).
- A Cayley graph $\Gamma(R, S)$ is integral if and only if S is U-unitary where $U = (\mathbb{Z}/n)^{\times}$.

Perfect state transfer on gcd- graphs

Question

Can we classify all gcd-graphs on R that have PST?

When $R=\mathbb{Z}/n$, many results are known (due to works of Godsil, Bašić-Petković-Stevanović, and others)

- PST can only exist between 0 and n/2. In particular, n must be even.
- When $S = (\mathbb{Z}/n)^{\times}$, PST exists only for n = 2, 4.

Perfect state transfer on gcd- graphs

Theorem (Nguyen-Tân)

Let R be a finite Frobenius ring. Suppose that R has the following Artin-Wedderburn decomposition: $R = (\prod_{i=1}^d S_i) \times R_2$. Here, (S_i, \mathfrak{m}_i) represents all local factors of R whose residue fields are \mathbb{F}_2 . For each $1 \leq i \leq d$, let e_i be the unique minimal element of S_i .

- If there exists PST between 0 and some $s \in R$, then s must be of the form $(a_1, a_2, ..., a_d, 0)$, where each a_i is 0 or e_i . In particular, if R is a local ring, then s = e, where e is the unique minimal element of S.
- ② Suppose that (R, \mathfrak{m}) is a principal ideal local ring with a generator α and residue field \mathbb{F}_2 . Let n be the smallest positive integer such that $\alpha^n = 0$. Then, the gcd-graph $\Gamma(R, S)$ has PST if and only if $|S \cap \{\alpha^{n-1}, \alpha^{n-2}\}| = 1$.

Perfect state transfer on gcd- graphs

Let us consider the case $S = R^{\times}$. In this case, we have the following theorem.

Theorem (Thongsomnuk-Meemark, Nguyen-Tân)

There exists PST on $\Gamma(R, R^{\times})$ if and only if $R = S_1 \times \prod_{i=1}^r \mathbb{F}_{q_i}$ where

- **1** S_1 is a product of local rings S' where each $S' \in \{\mathbb{F}_2, \mathbb{Z}/4, \mathbb{F}_2[x]/x^2\}.$
- 2 $q_i \equiv 1 \pmod{4}$ for all i.

References

- Chris Godsil, State transfer on graphs. Discrete Mathematics (2012).
- Walter Klotz, Torsten Sander, Some properties of unitary Cayley graphs. The electronic journal of combinatorics (2007).
- Saxena, Nitin, Simone Severini, and Igor E. Shparlinski, Parameters of integral circulant graphs and periodic quantum dynamics. International Journal of Quantum Information (2007).
- Bašić, Petković, Stevanović, Perfect state transfer in integral circulant graphs, Applied Mathematics Letters (2009).
- Tung T. Nguyen, Nguyen Duy Tân, Integral Cayley graphs over a finite symmetric algebra. Arch. Math. (2025).
- Tung T. Nguyen, Nguyen Duy Tân, Gcd-graphs over finite rings, preprint, arXiv:2503.04086.
- Tung T. Nguyen, Nguyen Duy Tân, Perfect state transfers on gcd-graphs over a finite Frobenius ring, preprint arXiv:2504.00404.

Acknowledgements

We gratefully acknowledge the following organizations for their support:

- AMS-Simons Travel Grant
- Vietnam National Foundation for Science and Technology Development (NAFOSTED)
- Lake Forest College for their support with an Overleaf subscription

Thank You!