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What is a graph?

A (undirected) graph is an ordered pair G = (V ,E ) where

V is a finite set whose elements are called vertices,

E is a set of paired vertices.

Suppose the vertex set of G is {v1, v2, . . . , vn}. A convenient way
to represent G is to use its adjacency matrix A = AG = (aij) where

aij =

{
1 if (vi , vj) ∈ E

0 else.

With this presentation, we can then use tools from matrix theory,
representation theory, and number theory to study the structure of
G .
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An Erdős–Rényi random graph

Figure 1: A random graph on
n = 5 nodes


0 1 1 1 0
1 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0

 .
The adjacency matrix of this

graph.
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Graph spectra

The spectrum of G , denoted by Spec(G ), is the set of all
eigenvalues of its adjacency matrix A. Equivalently, it is the
set of all roots of the characteristic polynomial pA(t) of A
where

pA(t) = det(tIn − A).

Let K be a subfield of C . A graph is called K -rational if
λ ∈ OK for each λ ∈ Spec(G ) where OK is the ring of
integers in K .

A Q-rational graph is often called an integral graph.
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Perfect state transfer on graphs

Definition

Let F (t) be the continuous-time quantum walk associated with G;
namely F (t) = exp(iAG t). There is perfect state transfer (PST) in
graph G if there are distinct vertices a and b and a positive real
number t such that |F (t)ab| = 1.

The adjacency matrix of K2 is

A =

[
0 1
1 0

]
.

F (t) = cos(t)I + i sin(t)A =

[
cos(t) i sin(t)
i sin(t) cos(t)

]
.

and hence

F
(π
2

)
=

[
0 i
i 0

]
.

This shows that there is PST between u and v at t = π
2 .
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Cayley graphs over a finite commutative ring

In general, the classification of PST on a graph is a difficult
problem. However, for certain arithmetic graphs, this problem is
more tractable.

Definition

Let R be a finite commutative group and S is a subset of R. The
Cayley graph G = Γ(R,S) is the graph with the following data

V (G ) = R.

a, b ∈ V (G ) are adjacent if a− b ∈ S .

In practice, the definition of S often involves the multiplicative
structure of R.
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Integral Cayley graphs

Theorem (Godsil)

Suppose that there is PST on G .

1 G is K-rational where K is either Q or a quadratic extension
of Q .

2 If G is regular, then it is Q-rational.

We can classify all integral Cayley graphs defined over R
(works of Godsil-Spiga, So, Nguyen-Tân). More on this later.

The classification of Cayley graphs with PST seems to be a
much harder problem.
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The Circulant Diagonalization Theorem

Let G be a Cayley graph defined over R = Z /3. The adjacency
matrix of G is a 3× 3 matrix of the form

C =

c0 c1 c2
c2 c0 c1
c1 c2 c0

 .

Let ω3 be 3-root of unity; namely ω3
3 = 1. Then we have

C

 1
ω3

ω2
3

 =

c0 + c1ω3 + c2ω
2
3

c2 + c0ω3 + c1ω
2
3

c1 + c2ω3 + c0ω
2
3

 =

 (c0 + c1ω3 + c2ω
2
3)1

(c0 + c1ω3 + c2ω
2
3)ω3

(c0 + c1ω3 + c2ω
2
3)ω

2
3

 .

We see that (1, ω3, ω
2
3)

t is an eigenvector of C associated with the
eigenvalue c0 + c1ω3 + c2ω

2
3.
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The Circulant Diagonalization Theorem

More generally we have the following theorem.

Theorem (Circulant Diagonalization Theorem)

Let G = Γ(R,S) be a Cayley graph. Then, the spectrum of G is
precisely the multiset

{λχ =
∑
s∈S

χ(s)}
χ∈R̂ ,

here R̂ = Hom(R,C×) is the dual group of R considered as an
abelian group.

The spectrum of G is precisely the Discrete Fourier Transform of
the indicator vector of S .
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Finite Frobenius rings

Let n be the characteristic of R and let ζn := e
2πi
n be a primitive

root of unity.

Definition

A finite commutative ring R is called Frobenius if there exists a
Z /n-functional ψ : R → Z /n such that ker(ψ) does not contain
any non-zero ideal in R.

For each r ∈ R, define χr ∈ R̂ by the rule

χr (s) = ζ
ψ(rs)
n .

The fact that ker(ψ) does not contain any non-zero ideal in R
implies that the map R → R̂ defined by r 7→ χr is an
isomorphism. In other words, R is canonically self-dual.
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Finite Frobenius rings

Some examples of finite Frobenius rings.

R =
∏

n Z /n. Consequently, each finite abelian group is
isomorphic to a (R,+) where R is a finite Frobenius ring.

R is a finite quotient of OK where K is a finite extension of Q
or Fq(t).

If R is Frobenius and H is an abelian group then R[H] is also
Frobenius.

Every finite commutative ring is a quotient of a finite
Frobenius ring.
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Spectra of Cayley graphs over a finite Frobenius ring

Let G = Γ(R,S) be a Cayley graph defined over R.

For each r ∈ R, we define

v⃗r =
1√
|R|

[ζ
ψ(rs)
n ]Ts∈R ∈ C|R|, λr =

∑
s∈S

ζ
ψ(rs)
n .

Then vr is a normalized eigenvector of AG with λr being the
corresponding eigenvalue.

Let V = [vr ]r∈R ∈ C|R|×|R|, D = diag([λr ]r∈R). Then we can
write

AG = VDV ∗ =
∑
r∈R

λr v⃗r v⃗
∗
r ,

Therefore, we have

F (t) =
∑
r∈R

e iλr t v⃗r v⃗
∗
r .
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PST on Cayley graphs over a finite Frobenius ring

Let s1, s2 ∈ R. Then

F (t)s1,s2 =
1

|R|
∑
r∈R

e iλr tζ
ψ((s1−s2)r)
n

=
1

|R|
∑
r∈R

e
2πi

(
λr

t
2π

+
ψ((s1−s2)r)

n

)
.

By the triangle inequality, |F (t)s1,s2 | = 1 if and only if

λr
t
2π + ψ(s1−s2)r

n are the same modulo 1 for all r ∈ R.

By symmetry, there exists perfect state transfer between s1
and s2 if and only if there exists perfect state transfer between
0 and s2 − s1.
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PST on Cayley graphs over a finite Frobenius ring

In summary, we have the following.

Theorem (Nguyen-Tân, Bašić-Petković-Stevanović)

Let G = Γ(R,S) be a Cayley graph defined over a finite Frobenius
ring. There exists perfect state transfer from 0 to s at time t if
and only if for all r1, r2 ∈ R

(λr1 − λr2)
t

2π
+
ψ(s(r1 − r2))

n
∈ Z .

Corollary

Let ∆ be the abelian group generated by r1 − r2 where r1 and r2
are elements of R such that λr1 = λr2 . Then ψ(sd) = 0 for all
d ∈ ∆. In particular, if ∆ = R then there is no PST on Γ(R, S).
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Gcd-graphs over a Frobenius ring

Definition

A Cayley graph Γ(R, S) is called a gcd-graph if S is stable under
the action of R×.

We can show that S is stable under the action of R× if and
only if there exists a subset D = {x1, x2, . . . , xk} of
non-associate elements in R with the property that: for each
s ∈ R, s ∈ S if and only if sR = xiR for some xi ∈ D.

Gcd-graphs over a finite quotient of Z were introduced by
Klotz-Sander. They described the spectra of these graphs
using the theory of Ramanujan sums cm(n) where

cn(m) =
∑

1≤j≤n
gcd(j ,n)=1

ζmj
n .

Various generalizations to more general rings:
Thongsomnuk-Meemark (for a principal ideal ring) and
Nguyen-Tân (for a general commutative ring).
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An example

Figure 2: The gcd-graph Gf (D) with f = x(x + 1) ∈ F3[x ] and
D = {x , x + 1}
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Gcd-graphs over a Frobenius ring

In practice, it is often the case that S is only stable under the
action of a proper subgroup U of R×. We call these graphs
U-unitary Cayley graphs.

In this case, the spectra of these graphs can be described by
generalized Ramnujan sums, which can be further explained
by the supercharacter theory on R associated with U (work of
Nguyen-Tân).

A Cayley graph Γ(R, S) is integral if and only if S is U-unitary
where U = (Z /n)×.
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Perfect state transfer on gcd- graphs

Question

Can we classify all gcd-graphs on R that have PST?

When R = Z /n, many results are known (due to works of Godsil,
Bašić-Petković-Stevanović, and others)

PST can only exist between 0 and n/2. In particular, n must
be even.

When S = (Z /n)×, PST exists only for n = 2, 4.
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Perfect state transfer on gcd- graphs

Theorem (Nguyen-Tân)

Let R be a finite Frobenius ring. Suppose that R has the following
Artin-Wedderburn decomposition: R = (

∏d
i=1 Si )× R2. Here,

(Si ,mi) represents all local factors of R whose residue fields are F2.
For each 1 ≤ i ≤ d, let ei be the unique minimal element of Si .

1 If there exists PST between 0 and some s ∈ R, then s must
be of the form (a1, a2, . . . , ad , 0), where each ai is 0 or ei . In
particular, if R is a local ring, then s = e, where e is the
unique minimal element of S.

2 Suppose that (R,m) is a principal ideal local ring with a
generator α and residue field F2. Let n be the smallest
positive integer such that αn = 0. Then, the gcd-graph
Γ(R,S) has PST if and only if |S ∩ {αn−1, αn−2}| = 1.
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Perfect state transfer on gcd- graphs

Let us consider the case S = R×. In this case, we have the
following theorem.

Theorem (Thongsomnuk-Meemark, Nguyen-Tân)

There exists PST on Γ(R,R×) if and only if R = S1 ×
∏r

i=1 Fqi

where

1 S1 is a product of local rings S ′ where each
S ′ ∈ {F2,Z /4,F2[x ]/x

2}.
2 qi ≡ 1 (mod 4) for all i .
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Thank You!
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