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What is a graph?

A (undirected) graph is an ordered pair G = (V ,E ) where

V is a finite set whose elements are called vertices,

E is a set of paired vertices.

Suppose the vertex set of G is {v1, v2, . . . , vn}. A convenient way
to represent G is to use its adjacency matrix A = AG = (aij) where

aij =

{
1 if (vi , vj) ∈ E

0 else.

With this presentation, we can then use tools from matrix theory,
representation theory, and number theory to study the structure of
G .
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An Erdős–Rényi random graph

Figure 1: A random graph on
n = 5 nodes


0 1 1 1 0
1 0 1 0 0
1 1 0 1 1
1 0 1 0 0
0 0 1 0 0

 .
The adjacency matrix of this

graph.

3 / 22



Graph spectra

The spectrum of G , denoted by Spec(G ), is the set of all
eigenvalues of its adjacency matrix A. Equivalently, it is the
set of all roots of the characteristic polynomial pA(t) of A
where

pA(t) = det(tIn − A).

Let K be a subfield of C . A graph is called K -rational if
λ ∈ OK for each λ ∈ Spec(G ) where OK is the ring of
integers in K .

A Q-rational graph is often called an integral graph.
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Perfect state transfer on graphs

Definition

Let F (t) be the continuous-time quantum walk associated with G;
namely F (t) = exp(iAG t). There is perfect state transfer (PST) in
graph G if there are distinct vertices a and b and a positive real
number t such that |F (t)ab| = 1.

The adjacency matrix of K2 is

A =

[
0 1
1 0

]
.

F (t) = cos(t)I + i sin(t)A =

[
cos(t) i sin(t)
i sin(t) cos(t)

]
.

and hence

F
(π
2

)
=

[
0 i
i 0

]
.

This shows that there is PST between u and v at t = π
2 .
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Perfect state transfer on graphs

Theorem (Godsil)

Suppose that there is PST on G .

1 G is K-rational where K is either Q or a quadratic extension
of Q .

2 If G is regular, then it is Q-rational.
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Circulant graphs

In general, the classification of integral graphs is a difficult
problem. However, for certain arithmetic graphs, this problem is
more tractable.

Definition

A graph G is called Z /n-circulant if it is equipped with the
following data

V (G ) = Z /n = {0, 1, . . . , n − 1}
There exists a subset S ⊂ Z /n such that a, b ∈ V (G ) are
adjacent if a− b (mod n) is an element of S .

We will write G = Γ(Z /n, S).
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The Circulant Diagonalization Theorem

Let G be a circulant graph with n = 3. The adjacency matrix of G
is a 3× 3 matrix of the form

C =

c0 c1 c2
c2 c0 c1
c1 c2 c0

 .

Let ω3 be 3-root of unity; namely ω3
3 = 1. Then we have

C

 1
ω3

ω2
3

 =

c0 + c1ω3 + c2ω
2
3

c2 + c0ω3 + c1ω
2
3

c1 + c2ω3 + c0ω
2
3

 =

 (c0 + c1ω3 + c2ω
2
3)1

(c0 + c1ω3 + c2ω
2
3)ω3

(c0 + c1ω3 + c2ω
2
3)ω

2
3

 .

We see that (1, ω3, ω
2
3)

t is an eigenvector of C associated with the
eigenvalue c0 + c1ω3 + c2ω

2
3.
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The Circulant Diagonalization Theorem

More generally we have the following theorem.

Theorem (Circulant Diagonalization Theorem)

Let G be a circulant graph associated with a subset S ⊂ Z /n. Let
c⃗ = (c0, c1, . . . , cn−1) be the first row vector of AG . Let ζn be a
fixed primitive n-root of unity and

vn,j =
1√
n

(
1, ζ jn, ζ

2j
n , . . . , ζ

(n−1)j
n

)T
, j = 0, 1, . . . , n − 1.

Then vn,j is an eigenvector of C associated with the eigenvalue

λj = c0 + c1ζ
j
n + c2ζ

2j
n + · · ·+ cn−1ζ

(n−1)j
n =

∑
i∈S

ζ ijn .

In other words, the spectrum of G is precisely the Discrete Fourier
Transform of c⃗ .
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Integral Circulant Graphs

By the CDT theorem, a circulant graph G is integral if λj ∈ Z
for all 0 ≤ j ≤ n − 1. By Galois theory, this occurs if
σ(λj) = λj for all σ ∈ Gal(Q(ζn)/Q).

The Galois group Gal(Q(ζn)/Q) is canonically isomorphic to
(Z /n)×. In fact, each a ∈ (Z /n)× produces
σa ∈ Gal(Q(ζn)/Q) defined by σa(ζn) = ζan .

By definition

σa(λj) =
∑
i∈S

ζaijn =
∑
i∈aS

λijn

We conclude that if aS = S for all a ∈ (Z /n)× then
σa(λj) = λj . In other words, G is integral.
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Integral Circulant Graphs

Question

Is the converse true? In other words, if Γ(Z /n,S) is integral, is it
true that S is stable under the action of (Z /n)×?

Answer (So’s theorem)

Yes. If a circulant graph G is integral, then S is stable under the
action of (Z /n)×.

We can show that S is stable under the action of (Z /n)× if and
only if there exists a subset D = {d1, d2, . . . , dk} of proper divisors
of n with the property that: for each s ∈ Z /n, s ∈ S if and only if
gcd(s, n) ∈ D. Such a graph is called a gcd-graph over Z .
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Integral graphs over a finite commutative ring

Let R be a finite commutative ring and S a subset of R. Let
G = Γ(R, S) be the graph with the following data

The vertex set of G is R.

Two vertices a, b of G are adjacent if a− b ∈ S .

Question

Can we classify S such that G = Γ(R,S) is integral?

Definition

A finite Z /n-algebra R is called Frobenius ring if there exists a
linear functional ψ : R → Z /n such that the kernel of ψ does not
contain any non-zero ideal in R.
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Examples

R = Z /n. In this case, the identity function Z /n → Z /n is a
non-degenerate linear form.

R = Fp[x ]/f where f =
∑

i=0 aix
i is a non-constant

polynomial. Every element of R can be written in the form
g =

∑m−1
i=0 bix

i . In this case, the function ψ : R → Fp defined
by

ψ(g) = bm−1

is a non-degenerate linear functional on R.

More generally, we can show that if K is a global field then
any finite quotient of OK is a Frobenius ring.

R is a Frobenius ring, then R[G ] is also a Frobenius ring
where G is a finite abelian group.
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Integral Cayley graphs over a finite Frobenius ring

A key property of a finite Frobenius ring is that the characters of
(R,+) are precisely χr = ζψr

n where ψr (a) = ψ(ra). In other words,
the dual group Hom(R,C×) is a cyclic R-module.

Theorem (Nguyen-Tan)

Let R be a finite Frobenius ring with characteristic n. Let K be a
subfield of Q(ζn). Then the graph Γ(R, S) is K-rational if and only
if S is stable under the action of H where H is the subgroup of
Gal(Q(ζn)/Q) corresponding to K in the Galois correspondence.
In particular, Γ(R,S) is integral if and only if aS = S for each
a ∈ (Z /n)×.
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Gcd-graphs over rings

Definition

A Cayley graph Γ(R, S) is called a gcd-graph if S is stable under
the action of R×.

We can show that S is stable under the action of R× if and
only if there exists a subset D = {x1, x2, . . . , xk} of
non-associate elements in R with the property that: for each
s ∈ R, s ∈ S if and only if sR = xiR for some xi ∈ D.

In practice, it is often the case that S is only stable under the
action of a proper subgroup U of R×. We call these graphs
U-unitary Cayley graphs. In this case, the spectra of these
graphs can be described by a supercharacter theory on R
associated with U (joint work with Nguyen Duy Tan).
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An example

Figure 2: The gcd-graph Gf (D) with f = x(x + 1) ∈ F3[x ] and
D = {x , x + 1}
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Spectra of gcd-graphs

A gcd-graph Γ(R, S) is necessarily integral. In fact, we can say
more.

Theorem (Mináč, Nguyen, Tan)

Suppose that Γ(R, S) is a gcd-graph over R. Then, there is an
explicit description of the spectrum of Γ(R,S) via the generalized
Mobius and Euler functions.
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Perfect state transfer on gcd- graphs

Question

Can we classify all gcd-graphs on R that have PST?

When R = Z /n, many results are known (due to works of Godsil,
Basic, Petkovic, Stevanovic, and others)

PST can only exist between 0 and n/2. In particular, n must
be even.

When S = (Z /n)×, PST exists only for n = 2, 4.
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Perfect state transfer on gcd- graphs

Theorem (Nguyen-Tan)

Let R be a finite Frobenius ring. Suppose that R has the following
Artin-Wedderburn decomposition: R = (

∏d
i=1 Si )× R2. Here,

(Si ,mi) represents all local factors of R whose residue fields are F2.
For each 1 ≤ i ≤ d, let ei be the unique minimal element of Si .

1 If there exists PST between 0 and some s ∈ R, then s must
be of the form (a1, a2, . . . , ad , 0), where each ai is 0 or ei . In
particular, if R is a local ring, then s = e, where e is the
unique minimal element of S.

2 Suppose that (R,m) is a principal ideal local ring with a
generator α and residue field F2. Let n be the smallest
positive integer such that αn = 0. Then, the gcd-graph
Γ(R,S) has PST if and only if |S ∩ {αn−1, αn−2}| = 1.
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Thank You!
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