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ABSTRACT. Gcd-graphs over the ring of integers modulo n are a simple and elegant class of
integral graphs. The study of these graphs connects multiple areas of mathematics, includ-
ing graph theory, number theory, and ring theory. In a recent work, inspired by the analogy
between number fields and function fields, we define and study gcd-graphs over polyno-
mial rings with coefficients in finite fields. We discover that, in both cases, gcd-graphs share
many similar and analogous properties. In this article, we extend this line of research fur-
ther. Among other topics, we explore an analog of a conjecture of So and a weaker version
of Sander-Sander, concerning the conditions under which two gcd-graphs are isomorphic or
isospectral. We also provide several constructions showing that, unlike the case over Z, it is
not uncommon for two gcd-graphs over polynomial rings to be isomorphic.

1. INTRODUCTION

Unitary graphs and their natural generalizations, gcd-graphs, over Z are first formally
introduced by the work of Klotz and Sander (see [6]). Since this work, the literature has seen
an explosion of research around the topics exploring many further fundamental properties
of these graphs including their connectedness, bipartiteness, perfectness, clique and inde-
pendence numbers, spectral properties, and much more. We refer the readers to [1, 2, 4, 5]
and the references therein for further discussions around this line of research.

We first recall the definition of a gcd-graph.

Definition 1.1. Let A be a PID and n ∈ A which is not a unit. Suppose further that the ring
A/n is finite. Let Div(n) be the set of proper divisors of n (defined up to an associate) and
D ⊂ Div(n). The gcd-graph Gn(D) is the graph equipped with the following data

(1) The vertex set of Gn(D) is A/n.
(2) Two vertices a, b ∈ Gn are adjacent if and only if gcd(a − b, n) ∈ D.

In other words, Gn(D) is the Cayley graph on A/n with the generating set

SD = {h ∈ A/n| gcd(h, n) ∈ D.}

The case A = Z is discussed in [6] and the case A = Fq[x] is the main topic of [8]. By their
own nature, we can see that the study of these gcd-graphs graphs bridges several branches
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of mathematics including graph theory, number theory, commutative algebra, and character
theory for finite groups. For example when A = Z, using the the theory of Ramanujan
sums, the authors of [6] show that gcd-graphs are integral; meaning all of their eigenvalues
are integers. In [13], So shows that the converse is true as well: a Z /n-circulant graph is
integral if and only if it is a gcd-graph. So also poses a conjecture about whether a gcd-graph
Gn(D) determined D and n (see [13, Conjecture 7.3]). While this conjecture is still open, some
progress has been made. For example, Sander-Sander in [11] asks that given n whether D is
determined by the spectral vector (∑d∈D c(ℓ, n

d ))
n
ℓ=1 where c(ℓ, n

d ) is the Ramanujan sum (see
[6, Section 4] for the definition). We remark that the components of this spectral vector are
exactly the eigenvalues of Gn(D) counted with multiplicity. In the same paper, Sander and
Sander prove their own conjecture. In [12], Schlage-Puchta gives a new and shorter proof
for the weak conjecture of Sander-Sander using a determinant involving Ramanujan sums.

Given what is already known in the case A = Z, one may ask whether the conjecture
of So and the weaker version of Sander-Sander hold in the case A = Fq[x]. As we will see
in this article, the answer is NO for the first question (though it fails for a good reason, see
Remark 4.14) and YES for the second question. In fact, for the first question, we will provide
various constructions of isomorphic gcd-graphs for different f and D. One particular reason
for this stark difference between the number case and the function field case is that over
function fields, we can find f ̸= g such that Fq[x]/ f ∼= Fq[x]/g whereas in the number field
case, this is impossible. For the second question, we will show that the approach of [12] can
be adapted naturally in the function field setting leading to a proof of the weak conjecture of
Sander-Sander in this case.

1.1. Outline. In Section 2, we prove the analog of the weaker conjecture of Sander-Sander
in the function fields setting. More precisely, we show that for a fixed f ∈ Fq[x], D is deter-
mined by a spectral vector describing all eigenvalues of G f (D). We achieve this by studying
a matrix involving Ramanujan sums whose counterpart over Z was introduced in [12]. In
Section 3, we study gcd-graphs G f (D) where f is a prime power. Here, we show that many
of the results concerning the spectrum of G f (D), as described in [10, 11], have analogs in the
function field setting. Furthermore, we explore several fundamental graph-theoretic prop-
erties of G f (D) such as their bipartiteness, perfectness, clique, and independent numbers,
which, to the best of our knowledge, have not yet been addressed in the literature—even
for gcd-graphs over Z. Section 4 studies isomorphism between gcd-graphs. This is where
we will see differences between gcd-graphs over Z and gcd-graphs over Fq[x]. By analyz-
ing experimental data via the Python library Networkx, we provide several constructions of
isomorphic gcd-graphs.

1.2. Code. Many insights in this paper are gained through an extensive analysis of experi-
mental data. The code that we wrote to generate data and do experiments on them can be
found at [9]. Additionally, we have also verified all statements in this work with various
concrete and computable examples.
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2. SPECTRAL VECTORS DETERMINE D

Let q be a prime power, and f ∈ Fq[x] a monic polynomial. As we explain in [8, Section
6], there is a direct analogy between the character theory of Z /n and that of Fq[x]/ f . More
specifically, while the character theory of Z /n can be fully described once we fix a primitive
n-th root of unity, the character theory of Fq[x]/ f is similarly determined by a fixed non-
degenerate functional on Fq[x]/ f . To be more specific, the spectra of gcd-graphs in both
cases have an explicit description via Ramanujan sums. For the case of gcd-graphs over
Z, we refer readers to [6, Section 4]. For Fq[x], we will now recall the definition of the
Ramanujan sums which describe the spectra of gcd-graphs.

Definition 2.1. (see [8, Section 6.2]) Let f ∈ Fq[x] be a monic polynomial. For each g ∈ Fq[x],
the Ramanujan sum c(g, f ) is defined as follow

c(g, f ) = cψ(g, f ) = ∑
a∈(Fq[x]/ f )×

ζ
Tr(ψ(ga))
p .

Here ψ : Fq[x]/ f → Fq is a non-degenerate function on Fq[x] and Tr : Fq → Fp is the trace
map.

While the above definition looks rather complicated, we can show that c(g, f ) has a simple
expression almost analogous to the case of Ramanujan sums over Z. In particular, c(g, f )
does not depend on the choice of ψ as long as we make sure that it is non-degenerate. More
precisely, by [8, Section 6.2] we have

(2.1) c(g, f ) = µ(t)
φ( f )
φ(t)

, where t =
f

gcd( f , g)
.

The following definition is inspired by the work [11] of Sander-Sander on gcd-graphs over
Z .

Definition 2.2. Let Div( f ) be the set of proper monic divisors of f . Let D ⊂ Div( f ). The
spectral vector of the gcd-graph G f (D) is defined to be the following vector

λ⃗( f , D) =
(
λg( f , D)

)
g∈Fq[x]/ f

where

(2.2) λg( f , D) = ∑
d∈D

c
(

g,
f
d

)
.

By the main result in [8, Section 6], the components of this spectral vector are precisely the
eigenvalues of G f (D) counted with multiplicity. The following theorem is a direct analog of
[11, Theorem 1.2]

Theorem 2.3. Let D1, D2 be two proper subsets of Div( f ). Suppose that G f (D1) and G f (D2) have
the same spectral vector. Then D1 = D2.

To prove Theorem 2.3, we adapt the strategy employed in [12] which deals with gcd-
graphs over Z. More precisely, we will introduce and study a matrix similar to the one
defined in [12]. Let g, h ∈ Fq[x] and c(g, h) the Ramanujan sum. Let C f = (c(g, h))g,h∈Div( f ).
In [12, Theorem 1], the author solves the weak conjecture of Sander-Sander by showing that
the determinant of Cn is not zero. In the case of Fq[x], we have a similar statement.
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Proposition 2.4. Let | f | be the norm of f ; i.e, | f | is the order of the finite ring Fq[x]/ f . Then

det(C f ) = ±| f |
τ( f )

2 .

Here τ( f ) is the number of monic divisors of f . In particular det(C f ) ̸= 0.

Proof. We proceed by induction on the number of monic irreducible factors of f . If deg f = 0
then f = 1 and det(C1) = 1. Now let deg f > 0 and P a monic irreducible polynomial
comprime to f . Let n be a positive integer. Let f1, f2, . . . , fr be the monic divisors of f , here
r = τ( f ). We list the monic divisors of Pn f as

f1, f2, . . . , fr, P f1, P f2, . . . , P fr, . . . , P2 f1, P2 f2, . . . , P2 fr, . . . , Pn f1, Pn f2, . . . , Pn fr.

Then CPn f is an (n + 1)× (n + 1)-block matrix


C00 C01 · · · C0n

C10 C11 · · · C1n
...

... · · ·
...

Cn0 Cn1 · · · Cnn

 ,

where Cij is a r × r-matrix whose (k, l)-entry is

(Cij)kl = c(Pidk, Pjdl).

Clearly C00 = C f . If j ≥ i + 2 then

c(Pidk, Pjdl) =
φ(Pjdl)

φ(
Pjdl

gcd(Pidk, Pjdl)
)

µ(
Pjdl

gcd(Pidk, Pjdl)
) = 0.

This is because
Pjdl

gcd(Pidk, Pjdl)
is divisible by P2.

If j = i + 1 then

c(Pidk, Pjdl) =
φ(Pjdl)

φ(
Pjdl

gcd(Pidk, Pjdl)
)

µ(
Pjdl

gcd(Pidk, Pjdl)
)

=
φ(Pi+1)

φ(P)
φ(dl)

φ(
dl

gcd(dk, dl)
)

µ(P)µ(
dl

gcd(dk, dl)
)

= −|P|i φ(dl)

φ(
dl

gcd(dk, dl)
)

µ(
dl

gcd(dk, dl)
) = −|P|ic(dk, dl),

and hence Ci,i+1 = −|P|iC f .
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If j ≤ i then

c(Pidk, Pjdl) =
φ(Pjdl)

φ(
Pjdl

gcd(Pidk, Pjdl)
)

µ(
Pjdl

gcd(Pidk, Pjdl)
)

=
φ(Pj)φ(dl)

φ(
dl

gcd(dk, dl)
)

µ(
dl

gcd(dk, dl)
)

= φ(Pj)c(dk, dl),

and hence Cij = φ(Pj)C f . Thus

CPn f =



C f −C f 0 0 · · · 0
C f φ(P)C f −|P|C f 0 · · · 0
C f φ(P)C f φ(P2)C f −|P|2C f · · · 0
...

... · · ·
...

C f φ(P)C f φ(P2)C f φ(P3)C f · · · −|P|n−1C f

C f φ(P)C f φ(P2)C f φ(P3)C f · · · φ(Pn)C f


.

Subtracting the nth row from the n + 1th row and noting that φ(Pn) + |P|n−1 = |Pn|, we get

det(CPn f ) = ±det



C f −C f 0 0 · · · 0
C f φ(P)C f −|P|C f 0 · · · 0
C f φ(P)C f φ(P2)C f −|P|2C f · · · 0
...

... · · ·
...

C f φ(P)C f φ(P2)C f φ(P3)C f · · · −|P|n−1C f

0 0 0 0 · · · |P|nC f



= ±|P|rn det(C f )det



C f −C f 0 0 · · · 0
C f φ(P)C f −|P|C f 0 · · · 0
C f φ(P)C f φ(P2)C f −|P|2C f · · · 0
...

... · · ·
...

C f φ(P)C f φ(P2)C f φ(P3)C f · · · φ(Pn−1)C f


= · · · = ±|P|rn det(C f )|P|r(n−1) det(C f ) · · · |Pr|det(C f )

= ±|P|
n(n+1)

2 τ( f )(det C f )
n+1.

By the induction hypothesis

det(Cpn f ) = ±|P|
n(n+1)

2 τ( f )(| f |
τ( f )

2 )n+1 = ±(|P|n| f |)
(n+1)τ( f )

2 = ±|Pn f |
τ(Pn f )

2 ,

and we are done. □

We can now give a proof for Theorem 2.3.

Proof. Assume that G f (D1) and G f (D2) have the same spectral vector λ⃗( f , D1) = λ⃗( f , D2).
Then, the subvectors (λg( f , D1))g| f and (λg( f , D2))g| f indexed by divisors of f are also
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equal. For each i ∈ {1, 2}, we define the following indicator vector of size |τ( f )| × 1

(vi)h =

1 if f /h ∈ Di,

0 if f /h ̸∈ Di.

We then see that the vector (λg( f , D1))g| f (respectively (λg( f , D2))g| f ) are precisely C f v1

(respectively C f v2). Since C f is invertible, we conclude that v1 = v2 and therefore, D1 = D2.
□

3. GCD-GRAPHS ASSOCIATED WITH PRIME POWERS

In this section, we study the gcd-graphs G f (D) in the case f is a prime power; i.e, f = Pk

where P ∈ Fq[x] is an irreducible polynomial and k ≥ 1. In this case, a subset D of Div(Pk)

can be written uniquely in the following form D = {Pk1 , Pk2 , . . . , Pks} where

0 ≤ k1 < k2 < . . . < ks < k.

We will fix this notation throughout this section.

3.1. Graph theoretic properties of GPk(D). We first discuss some fundamental graph-theoretic
properties of GPk(D). Recall that for each f ∈ Fq[x], | f | = qdeg( f ) is the order of the finite
ring Fq[x]/ f .

Proposition 3.1. GPk(D) has exactly |P|k1 connected components and each component is isomorphic
to GPk−k1 (D′) where

D′ = {1, Pk2−k1 , . . . , Pks−k1}.

In particular, GPk(D) is connected if and only if k1 = 0.

Proof. By definition, the cosets {g + Pk1(Fq[x]/Pk)} where g runs over Fq[x]/Pk1 are mu-
tually unconnected. Furthermore, by [8, Lemma 5.4], each of these cosets is isomorphic to
GPk−k1 (D′) which is connected by [8, Corollary 3.4]. □

Proposition 3.2. GPk(D) is a bipartite graph if and only the following conditions hold

(1) Fq = F2 .
(2) deg(P) = 1; namely either P = x or P = x + 1.
(3) D = {1}.

Proof. Suppose that GPk(D) is a bipartite graph. By [8, Corollary 4.2], we must have Fq = F2

and gcd(Pk, x(x + 1)) ̸= 1. Since P is irreducible, we conclude that either P = x or P = x + 1.
By [8, Theorem 4.3], we also know that for each 1 ≤ i ≤ s, gcd(Pk, x(x + 1)) ∤ Pki . This
happens only if ki = 0; or equivalently D = {1}. Conversely, if all of the above conditions
are satisfied, then by [8, Theorem 4.3] GPk(D) is bipartite. We can in fact show a concrete
bipartite partition of GPk(D) as follows

V(GPk(D)) = A0
⊔

A1,

where

A0 = {h ∈ Fq[x]/Pk such that P | h},
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and

A1 = {h ∈ Fq[x]/Pk such that P ∤ h}.

□

We now discuss the decomposition of GPk(D) into the wreath product (also known as
the lexicographic product) of simpler graphs. First, we recall the definition of the wreath
product and homogeneous sets.

Definition 3.3. Let Γ, ∆ be two graphs. The wreath product of Γ and ∆ is the graph Γ ∗ ∆
equipped with the following data

(1) The vertex set of Γ ∗ ∆ is the Cartesian product V(Γ)× V(∆),
(2) (x, y) and (x′, y′) are adjacent in Γ ∗ ∆ if either (x, x′) ∈ E(Γ) or x = x′ and (y, y′) ∈

E(∆).

Definition 3.4. Let G be a graph. A homogeneous set in G is a set X of vertices of G such that
every vertex in V(G) \ X is adjacent to either all or none of the vertices in X. A homogenous
set X is said to be non-trivial if 2 ≤ X < |V(G)|.

As shown in [4, Section 3], the existence of a homogenous set in a Cayley graph is almost
equivalent to the existence of a decomposition of G into a wreath product. In [8, Section 5],
we describe the necessary and sufficient conditions for the existence of homogeneous sets in
the gcd-graphs G f (D) over Fq[x]. When f = Pk, the situation is relatively simple. In fact, by
[8, Theorem 5.5], we have the following.

Theorem 3.5. Let I = ⟨Pk−1⟩ be the ideal of Fq[x]/Pk generated by Pk−1. Then I is an homogeneous
set in GPk(D). Furthermore

GPk(D) ∼=

GPk−1(D1) ∗ K|P| if Pk−1 ∈ D,

GPk−1(D1) ∗ E|P| if Pk−1 ̸∈ D.

Here D1 = {Pk1 , . . . , Pks−1}, ∗ is the wreath product, Km (respectively Em) the complete graph
(respectively the co-complete graph) on m nodes.

We discuss various consequences of Theorem 3.5. First, it is known that the wreath prod-
uct G1 ∗ G2 is perfect if and only if both G1, G2 are perfect (see [7]). Since complete and
co-complete graphs are perfect, by mathematical induction, we conclude from Theorem 3.5
that.

Corollary 3.6. GPk(D) is a perfect graph.

Next, we discuss the clique number of GPk(D). Because the clique number ω(G) of a graph
G behaves well with respect to wreath products: ω(G1 ∗ G2) = ω(G1)ω(G2), we have the
following conclusion.

Corollary 3.7. The clique and chromatic numbers of GPk(D) are |P||D| = |P|s.
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Proof. By Theorem 3.5, we know that

GPk(D) ∼=

GPk−1(D1) ∗ K|P| if Pk−1 ∈ D,

GPk−1(D1) ∗ E|P| if Pk−1 ̸∈ D.

Here D1 = {Pk1 , . . . , Pks−1}. Since the clique number behaves well with respect to the wreath
product, we have

ω(GPk(D)) =

|P|ω(GPk−1(D1)) if Pk−1 ∈ D,

ω(GPk−1(D1)) if Pk−1 ̸∈ D.

By induction, we conclude that ω(GPk(D)) = |P|s. Since GPk(D) is perfect, its chromatic
number is also equal to |P|s. □

Finally, the wreath product also behaves well with respect to taking complement: (G1 ∗
G2)c = (G1)

c ∗ (G2)c. Therefore, by an identical argument, we also have.

Corollary 3.8. The indepedent number of GPk(D) is |P|k−|D| = |P|k−s.

3.2. Spectral properties of GPk(D). We now focus on the spectral properties of GPk(D).
While several of the results in this section are similar to those in [10, 11], many are new,
thanks to insights inspired by the experimental data that we generate for this project. We
first have the following observation about Ramanujan sums.

Lemma 3.9. Suppose that P ∈ Fq[x] be a monic irreducible polynomial. Let m, k be two non-negative
integers. Then

c(Pm, Pk) =


φ(Pk) if m ≥ k,

−|P|m if k − m = 1,

0 if k − m ≥ 2.

Proof. This follows directly from Eq. (2.1). □

Let us introduce the following notation which is inspired by a counterpart over Z (see [11,
Theorem 1.1]).

Definition 3.10. We define the following function

χ(Pk, D, t) =

1 if ki = k − t − 1 for some 1 ≤ i ≤ s,

0 else.

With this notation, we can now calculate the spectrum of GPk(D) explicitly. The following
statement is a direct analog of [11, Theorem 1.1] in the function fields setting.

Theorem 3.11. Let g ∈ Fq[x]/Pk and Pt = gcd(Pk, g). Let λg(Pk, D) be the eigenvector of GPk(D)

as described in Eq. (2.2). Then we have the following.

λg(Pk, D) = λPt(Pk, D) = −χ(Pk, D, t)|P|t + ∑
ki≥k−t

φ(Pk−ki)

= −χ(Pk, D, t)|P|t + (|P| − 1) ∑
ki≥k−t

|P|k−ki−1.
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Proof. By Eq. (2.2), we know that c(g, f ) = c(gcd( f , g), f ) for all f and g. In particular, we
have λg(Pk, D) = λPt(Pk, D). We then have

λPt(Pk, D) =
s

∑
i=1

c(Pt, Pk−ki).

By Lemma 3.9 and the definition of χ(Pk, D, t) we conclude that

λPt(Pk, D) = −χ(Pk, D, t)|P|t + ∑
ki≥k−t

φ(Pk−ki) = −χ(Pk, D, t)|P|t +(|P| − 1) ∑
ki≥k−t

|P|k−ki−1.

□

We now use Theorem 3.11 to describe various arithmetic and algebraic properties of the
spectrum of GPk(D).

3.2.1. Congruence of eigenvalues of GPk(D). In this section, by utilizing Theorem 3.11, we
investigate some congruence properties of eigenvalues of GPk(D). We then give an explicit
criterion for a number m to be an eigenvalue of GPk(D) for some choice of D. In particular,
we show that every integer m can be realized as an eigenvector of GPk(D) for appropriate
choices of P and D. We start this section with an observation which is suggested by our
numerical data.

Proposition 3.12. Let λ ∈ Z be an eigenvalue of GPk(D). Then

λ ≡

0 (mod |P| − 1) if λ ≥ 0

−1 (mod |P| − 1) if λ < 0.

Proof. Suppose that λ = λg(Pk, D) for some D where we keep the same notation as in Theo-
rem 3.11. We have

λg(Pk, D) = λPt(Pk, D) = −χ(Pk, D, t)|P|t + ∑
ki≥k−t

φ(Pk−ki),

We have

0 ≤ ∑
k>ki≥k−t

φ(Pk−ki) ≤
t

∑
i=1

φ(Pi) = (|P| − 1)
|P|t − 1
|P| − 1

= |P|t − 1.

Additionally, since χ(Pk, D, t) ∈ {0, 1}, we conclude that λ ≥ 0 if and only χ(Pk, D, t) = 0.
Therefore

(3.1) λ =

∑ki≥k−t φ(Pk−ki) = (|P| − 1)∑ki≥k−t |P|k−ki−1 if λ ≥ 0.

−|P|t + ∑ki≥k−t φ(Pk−ki) = −|P|t + (|P| − 1)∑ki≥k−t |P|k−ki−1 if λ < 0.
.

We then conclude that

λ ≡

0 (mod |P| − 1) if λ ≥ 0

−1 (mod |P| − 1) if λ < 0.

□

We have a direct corollary of Proposition 3.12.
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Corollary 3.13. Let λ be an integer satisfying the congruence condition

λ ≡

0 (mod |P| − 1) if λ ≥ 0

−1 (mod |P| − 1) if λ < 0.

Let λ0 be a non-negative integer defined by the following rule

λ0 =

 λ
|P|−1 (mod |P| − 1) if λ ≥ 0.
|λ+1|
|P|−1 (mod |P| − 1) if λ < 0.

.

Then m is an eigenvalue of GPk(D) for some k and D if and only each digit in the base |P| represen-
tation of m0 is either 0 or 1.

Proof. Let us keep the same notation as in the proof of Theorem 3.11. Then, we have

λ =

(|P| − 1)∑ki≥k−t |P|k−ki−1 if λ ≥ 0.

−|P|t + (|P| − 1)∑ki≥k−t |P|k−ki−1 if λ < 0.
.

Consequently, we have

λ0 =

∑ki≥k−t |P|k−ki−1 if λ ≥ 0.

∑t−1
i=0 |P|i − ∑ki≥k−t |P|k−ki−1 if λ < 0.

.

We can see that the statement follows directly from this formula. □

If |P| = 2 then we can see that the congruence condition mentioned in Proposition 3.12 is
trivial. As a result, we have the following.

Proposition 3.14. For each integer m, there exists an integer k and a subset D ⊂ Div(Pk) with
P = x ∈ F2[x] such that m is an eigenvalue of GPk(D).

3.2.2. Some special eigenvalues of GPk(D). We now discuss the existence of small eigenval-
ues. Specifically, for each λ ∈ {−1, 0, 1} we find the necessary and sufficient conditions for
λ to be an eigenvalue of GPk(D). Quite surprisingly, we will see that 0 and −1 cannot si-
multaneously an eigenvalue of GPk(D) (see Corollary 3.17). We start our discussion with the
eigenvalue 0.

Proposition 3.15. The following statements are equivalent

(1) Pk−1 ̸∈ D.
(2) 0 is an eigenvalue of GPk(D).

Consequently, there are exactly 2k−1 graphs in the family GPk(D) that has 0 as an eigenvalue.

Proof. Let us first show that (1) implies (2). Let λ = λP0(Pk, D). Since Pk−1 ̸∈ D we know
that χ(Pk, D, 0) = 0. Consequently, by Theorem 3.11, we conclude that λ = 0.

Conversely, let us assume that λ = λPt(Pk, D) = 0 is an eigenvalue of GPk(D). Suppose
to the contrary that Pk−1 ∈ D. By the proof of Proposition 3.12 we know that χ(Pk, D, t) = 0
and

∑
ki≥k−t

|P|k−ki−1 = 0.
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Since Pk−1 ∈ D, this implies that t = 0. However, this would implie that χ(Pk, D, 0) = 1
which is a contradiction. We conclude that Pk−1 ∈ D. □

For the eigenvalue −1, we have the following proposition.

Proposition 3.16. The following statements are equivalent

(1) Pk−1 ∈ D.
(2) −1 is an eigenvalue of GPk(D).

Consequently, there are exactly 2k−1 graphs in the family GPk(D) that has −1 as an eigenvalue.

Proof. Let us first show that (1) implies (2). Since Pk−1 ∈ D, we conclude that χ(Pk, D, 0) =
1. By Theorem 3.11, we conclude that λP0(Pk, D) = −1.

Conversely, suppose that λ = λPt(Pk, D) = −1 is an eigenvalue of GPk(D). Then χ(Pk, D, t) =
1 and −1 = λ = −|P|t + (|P| − 1)∑ki≥k−t |P|k−ki−1. This implies that

t−1

∑
i=0

|P|i = ∑
ki≥k−t

|P|k−ki−1.

We conclude that Pk−1 ∈ D. □

By combining Proposition 3.16 and Proposition 3.15 we have the following rather surpris-
ing corollary.

Corollary 3.17. For each D, exactly one of the values λ = 0 or λ = −1 is an eigenvalue of GPk(D).

Our numerical data suggests that 1 is an eigenvalue of GPk(D) under some very special
conditions. We remark that by Proposition 3.1, we only need to consider the case GPk(D) is
connected; i.e, 1 ∈ D.

Proposition 3.18. Suppose that 1 ∈ D. Then 1 is an eigenvalue of GPk(D) if and only if the
following conditions hold

(1) Fq = F2 .
(2) deg(P) = 1.
(3) Pk−1 ∈ D.
(4) Pk−2 ̸∈ D.

Proof. First, let us assume that λ = 1 is an eigenvalue of GPk(D). Then the congruence
relation Proposition 3.12 implies that |P| − 1 is a divisor of λ. This happens only if 2 = |P| =
qdeg(P). We conclude that q = 2 and deg(P) = 1. Furthemore, by Eq. (3.1), we can find t such
that χ(Pk, D, t) = 0 and

1 = ∑
ki≥k−t

|P|k−ki−1.

This happens only when t = 1 and Pk−1 ∈ D. Since χ(Pk, D, 1) = 0, we conclude that
Pk−2 ̸∈ D. For the other direction, we can see that if all of the above conditions are satisfied
then λP1(Pk, D) = 1. □

11



3.2.3. Some estimations on the eigenvalues of GPk(D). In this section, we discuss some
rather simple estimations on the eigenvalues of GPk(D). This section provides a direct analog
of [11, Section 3]. Keeping the notation as in Theorem 3.11, we have the following (compare
with [11, Corollary 2.1]).

Proposition 3.19. Let 0 ≤ u ≤ v < k. Then

|λPu(Pk, D)| ≤ |λPv(Pk, D)|.

Furthermore, λPk(Pk, D) is the degree of GPk(D) which is also its largest eigenvalues.

Proof. This statement follows directly from Eq. (3.1) and the fact that for each t ≥ 1

|P|t > (|P| − 1)
t−1

∑
i=0

|P|i.

□

Remark 3.20. The proof for [11, Corollary 2.1] is somewhat more complicated because the
authors allow loops in GPk(D); i.e, they consider the possibility that Pk ∈ D.

We now discuss some corollaries of Proposition 3.19. The first corollary concerns the
largest eigenvalues in G f (D).

Corollary 3.21. Let D1, D2 be two subsets of Div(Pk) such that GPk(D1) and GPk(D2) has the same
largest eigenvalue. Then D1 = D2.

Proof. Let D1 = {k1, k2, . . . , ks} and D2 = {h1, h2, . . . , ht}. Suppose that GPk(D1) and GPk(D2)

have the same largest eigenvalue. Then ∑s
i=1 |P|k−ki = ∑t

i=1 |P|k−hi . Let u be the last index
such that ku ̸= hu. Then we

s

∑
i=u

|P|k−ki =
t

∑
i=u

|P|k−hi .

If u = s or u = t, then we must have s = t and D1 = D2. Otherwise, suppose that u <

min(s, t). Without loss of generality, we can also assume that k − ku > k − hu. We have then

s

∑
i=u

|P|k−ki ≥ |P|k−ku ≥ |P|k−hu+1 >
k−ku

∑
i=0

|P|i ≥
t

∑
i=u

|P|k−hi .

We conclude that D1 = D2. □

Remark 3.22. Similar to the case of gcd-graphs over Z (see [11, Section1] for an example in
this case), Corollary 3.21 is false if f is not a prime power. For example, let f = x2(x + 1) ∈
F3[x], D1 = {1} and D2 = {x, x+ 1, x(x+ 1)}. Then the characteristic polynomials of G f (D1)

and G f (D2) are respectively

(x − 12)(x − 3)4(x + 6)4x18,

and

(x − 12)(x − 6)2(x − 3)2(x + 3)10x12.

We see that G f (D1) and G f (D2) have the same largest eigenvalue but they are not isomor-
phic.

12



We discuss another corollary of Proposition 3.19 which we find by investigating our nu-
merical data.

Corollary 3.23. Suppose that D ̸= ∅. Then GPk(D) has at least two distinct eigenvalues. Further-
more, GPk(D) has exactly two eigenvalues if and only if

(k1, k2, . . . , ks) = (k1, k1 + 1, . . . , k − 1).

In this case, G f (D) is the disjont union of |P|k1 copies of Km where m = |P|k−k1.

Proof. We know that the largest eigenvalues of GPk(D) is its degree which is

λPk(Pk, D) = (|P| − 1)∑
i
|P|k−ki−1 > 0.

Furthermore, since the sum of all eigenvalues of GPk(D) is 0, there must be an eigenvalue
that is negative. Therefore, GPk(D) must have at least two distinct eigenvalues. Note that,
this part holds true for all undirected simple graphs.

Suppose that GPk(D) has exactly two eigenvalues. We need to show that ki+1 − ki = 1
for 1 ≤ i ≤ s − 1. Suppose that is not the case. Then, we can find 1 ≤ i ≤ s − 1 such
that ki+1 − ki > 1. We then see that χ(Pk, D, k − ki+1) = 0 since there is no j such that
k j = k − (k − ki+1)− 1 = ki+1 − 1. We then see that

λPk−ki+1 (Pk, D) = (|P| − 1) ∑
j≥i+1

|P|k−k j−1.

Since λPk−ki+1 (Pk, D) > 0 and GPk(D) has exactly two eigenvalues λPk−ki+1 (Pk, D) = λPk(Pk, D).
Therefore ∑i |P|k−ki−1 = ∑j≥i+1 |P|k−k j−1, which is impossible. We conclude that ki+1 − ki =

1 for all 1 ≤ i ≤ s − 1.
□

We now conclude this section with a main theorem which says that D is determined by
the spectrum of GPk(D).

Theorem 3.24. Let D1, D2 be two subsets of Div(Pk). Then the following statements are equivalent

(1) D1 = D2.
(2) GPk(D1) and GPk(D2) are isomorphic.
(3) GPk(D1) and GPk(D2) are isospectral.

Proof. By definition (1) =⇒ (2) =⇒ (3). Let us show that (3) =⇒ (1). In fact, suppose
that GPk(D1) and GPk(D2) are isospectral. Then, in particular, they share the same largest
eigenvalue. By Corollary 3.21, we must have D1 = D2. □

4. ISOMORPHIC GCD-GRAPHS

4.1. Isomorphic unitary Cayley graphs in the family Fq[x]/ f . Let R be a finite commuta-
tive ring. The unitary Cayley GR graph on R is defined as the graph whose vertex set is R
and two vertices a, b are adjacent if a − b ∈ R×. Let Rad(R) be the Jacobson radical of R and
Rss = R/Rad(R) be the semi-simplification of R. In [4, Section 4], it is shown that Rad(R)
is a homogeneous set in R. Furthermore, GR is isomorphic to the wreath product GRss ∗ Em
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where m = |Rad(R)|. In [5, Theorem 5.3], Kiani and Aghaei show for two commutative rings
R1, R2, if GR1

∼= GR2 then Rss
1
∼= Rss

2 . Combining these two facts, we have the following.

Proposition 4.1. Suppose that R1, R2 are two commutative rings. Then the following conditions are
equivalent

(1) GR1
∼= GR2

(2) |R1| = |R2| and Rss
1
∼= Rss

2 .

We will use Proposition 4.1 to classify isomorphism classes of unitary graphs in the family
Fq[x]/ f where f is a monic polynomial of fixed degree n. Let rad( f ) be the radical of f ; i.e.
the product of all distinct prime factors of f . Then the Jacobson radical of Fq[x]/ f is precisely
the ideal generated by rad( f ). Consequently

(Fq[x]/ f )ss ∼= Fq[x]/rad( f ).

By Proposition 4.1, the isomorphism class of G f ({1}) depends on rad( f ) only. We remark,
however, that two polynomials with different radicals can still give rise to isomorphic uni-
tary graphs. For example, take the following examples f1 = x2, f2 = (x+ 1)2. Then rad( f1) =

x, rad( f2) = x + 1 but

Fq[x]/rad( f1) ∼= Fq[x]/rad( f2) ∼= Fq .

Consequently G f1({1}) ∼= G f2({1}) even though f1, f2 have different radicals. In general,
Galois theory for Fq implies that if g1 and g2 are two irreducible polynomials of the same de-
gree, then Fq[x]/g1

∼= Fq[x]/g2. Motivated by this observation, we introduce the following
definition.

Definition 4.2. Let f ∈ Fq[x] be a monic polynomial of degree n. We define the factorization
type of f as the n-tuple (a1, a2, . . . , an) where ai is the number of distinct irreducible factors
of f of degree i.

Example 4.3. Let f = x2(x + 1)(x2 + 1) ∈ F3[x]. Then, the degree of f is 5 and the factoriza-
tion type of f is (2, 1, 0, 0, 0).

By Proposition 4.1 and the previous discussion, we have the following.

Proposition 4.4. Let f1, f2 ∈ Fq[x] be two monic polynomial. The unitary graphs G f1({1} and
G f2({1}) are isomorphic if and only if deg( f1) = deg( f2) and f1, f2 have the same facotorizatin
type.

We will now use Proposition 4.4 to study the number of non-isomorphic classes of unitary
graphs of the form G f ({1}) where f ∈ Fq[x] and deg( f ) = n. Table 1 shows this number for
various values of n and q. As we can observe from this dataset, once we fix n, the number
of isomorphism classes seems to stabilize when q gets bigger. In fact, we have the following
proposition.

Proposition 4.5. Let n be a fixed number. Then, there exist two constants qn, Cn depending only
on n such that if q ≥ qn, then the number of non-isomorphic classes of unitary graphs of the form
G f ({1}) where f ∈ Fq[x] and deg( f ) = n is exactly Cn.
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n
q

2 3 4 5 7 8 9 11

1 1 1 1 1 1 1 1 1
2 3 3 3 3 3 3 3 3
3 4 5 5 5 5 5 5 5
4 7 9 10 10 10 10 10 10
5 9 12 13 14 14 14 14 14
6 15 22 24 25 26 26 26 26

TABLE 1. The number of isomorphism classes of unitary graphs in the family
Fq[x]/ f where deg( f ) = n for various values of n and q

In order to provide a proof for Proposition 4.5, we recall that for fixed m, q, the number
S(m, q) of irreducible polynomials of degree m over Fq[x] is given by the following Gauss’s
formula (see [3] for a proof of this formula using the inclusion-exclusion principle)

(4.1)
1
m ∑

d|m
µ(m/d)qd.

By Eq. (4.1), we see that for fixed n, S(m, q) is asymptotically equivalent to qm for all m ≤ n. In
particular, S(q, m) ≥ n for all q sufficiently large. We can now give a proof for Proposition 4.5

Proof. Let f ∈ Fq[x] be a monic polynomial of degree n and (a1, a2, . . . , an) be a factorization
type. Then we have

n

∑
m=1

mam ≤ n.

In particular, this shows that am ≤ n for all 1 ≤ m ≤ n. We can find a number qn such that for
q ≥ qn we have n ≤ S(m, q). Consequently, am ≤ S(m, q) as well. As long as this condition is
satisfied, the number of ways to “pick” am distinct polynomials from the set of all irreducible
polynomials over Fq[x] of degree m is independent of q. □

Remark 4.6. Table 1 suggests that we can in fact take qn = n. Furthermore, if we fix n, then
the number of isomorphism classes appears to increase when q increases. While both of
these observations turn out to be correct, the proof is lengthy and somewhat tangential to
the main focus of this paper. We plan to address these properties in a forthcoming work in
connection with necklace polynomials [14].

4.2. Isomorphic gcd-graphs. In the previous section, we discuss the necessary and suffi-
cient conditions for two unitary Cayley graphs to be isomorphic. In this section, we extend
this further to the case of gcd-graphs. The case f is a prime power is studied exclusively in
Section 3 so we will focus on the case f has at least two distinct factors in this section. Since
many of our insights arise from analyzing experimental data, we will begin this section with
a concrete numerical example.

Example 4.7. Let f = x(x + 1) ∈ F3[x]. Table 2 describe the isomorphism classes in the
family of G f (D) where D runs over the collection of subsets of Div( f ). We remark that we
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group these graphs by their characteristic polynomials; i.e. by isospectral classes, but we
have checked that elements in the same class are isomorphic as well. This is consistent with
a conjecture of So for gcd-graphs over Z saying that two gcd graphs G f (D1) and G f (D2) are
isomorphic if and only if they are isospectral (see [13]).

D Characteristic polynomial of G f (D)

[] x9

[1] , [x, x + 1] (x − 4)(x − 1)4(x + 2)4

[x] , [x + 1] (x − 2)3(x + 1)6

[1, x] , [1, x + 1] (x − 6)(x + 3)2x6

[1, x, x + 1] (x − 8)(x + 1)8

TABLE 2. Isomorphism classes in the family G f (D)

Looking closely at the data, we have the following observation. While the isomorphism
between G f (x) and G f (x + 1) as well as the isomorphism between G f (1, x) and G f (1, x +

1) are evident, the isomorphism between G f (1) and G f (x, x + 1) is less so. In fact, this
isomorphism appears like a coincidence. In fact, let us consider f = x(x + 1) ∈ Fq[x]. Then
the degree G f (1) is (q − 1)2 and the degree of G f (x, x + 1) = 2(q − 1). These two degrees are
equal only in the case q = 3.

We discuss a more complicated example.

Example 4.8. Let f = x2(x + 1) ∈ F3[x]. As expected, there are more isomorphism classes in
this family. We remark, however, that similar to the previous example some isomorphisms
depend on the fact that q = 3. More precisely, if we let f = x2(x + 1) ∈ F5[x], then we no
longer have an isomorphism between G f ([1, x, x + 1]) and G f ([1, x + 1, x2, x(x + 1)]). On the
other hand, some isomorphisms persist when we change q. For example, using the Python
library Networkx we find the following two phenomena.

(1) For every q ≤ 5 and f = x2(x + 1) ∈ Fq[x], G f ([1, x, x2]) and G f ([1, x + 1]) are
isomorphic.

(2) For every q ≤ 5 and f = x2(x + 1) ∈ Fq[x], G f ([1, x + 1, x2]) and G f ([1, x + 1, x(x +

1)]) are also isomorphic.

We try other various examples and find the following statement which explains the first
phenomena described in Example 4.8.

Proposition 4.9. Let f = f1 f2 such that gcd( f1, f2) = 1. Assume further rad( f1) and rad( f2)

have the same factorization type. Let

D1 = Div( f1) ∪ { f1},

and
D2 = Div( f2) ∪ { f2}.

Then G f (D1) and G f (D2) are isomorphic. In fact, they are both isomorphic to the wreath product

GFq[x]/rad( f1)({1}) ∗ Em where m = | f |
|rad( f1)| .
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D Characteristic polynomial of G f (D)

[] x27

[1] ,
[
x, x + 1, x2] (x − 12)(x − 3)4(x + 6)4x18

[x] ,
[
x2, x(x + 1)

]
(x − 4)3(x − 1)12(x + 2)12

[1, x] (x − 16)(x + 8)2(x + 2)8(x − 1)16

[x + 1] ,
[
x, x2] , [x, x(x + 1)] (x − 6)3(x + 3)6x18

[1, x + 1] ,
[
1, x, x2] (x − 18)(x + 9)2x24

[x, x + 1] (x − 10)(x − 4)2(x + 5)4(x + 2)6(x − 1)14

[1, x, x + 1] ,
[
1, x + 1, x2, x(x + 1)

]
(x − 22)(x + 5)2(x − 1)12(x + 2)12[

x2] , [x(x + 1)] (x − 2)9(x + 1)18[
1, x2] (x − 14)(x + 4)2(x + 7)2(x − 2)10(x + 1)12[

x + 1, x2] (x − 8)(x − 5)2(x + 4)4(x − 2)6(x + 1)14[
1, x + 1, x2] , [1, x + 1, x(x + 1)] ,

[
1, x, x2, x(x + 1)

]
(x − 20)(x + 7)2(x − 2)6(x + 1)18[

1, x, x + 1, x2] , [1, x, x + 1, x(x + 1)] (x − 24)(x + 3)8x18

[1, x(x + 1)] ,
[
x, x + 1, x2, x(x + 1)

]
(x − 14)(x − 5)4(x + 4)4(x + 1)18

[1, x, x(x + 1)] (x − 18)(x + 6)2(x − 3)4(x + 3)6x14

[x + 1, x(x + 1)] ,
[
x, x2, x(x + 1)

]
(x − 8)3(x + 1)24

[x, x + 1, x(x + 1)] (x − 12)(x − 6)2(x − 3)2(x + 3)10x12[
1, x2, x(x + 1)

]
(x − 16)(x + 5)2(x − 4)4(x − 1)6(x + 2)14[

x + 1, x2, x(x + 1)
]

(x − 10)(x − 7)2(x − 1)8(x + 2)16[
1, x, x + 1, x2, x(x + 1)

]
(x − 26)(x + 1)26

TABLE 3. Isomorphism classes in the family G f (D) for f = x2(x + 1) ∈ F3[x]

Proof. By the Chinese remainder theorem

R = Fq[x]/( f1 f2) ∼= Fq[x]/ f1 × F2[x]/ f2.

Under this isomorphism and by the definition of D1, we can see that

(x1, y1), (x2, y2) ∈ Fq[x]/ f1 × Fq[x]/ f2,

are adjacent in G f (D1) if and only y1 − y2 ∈ (Fq[x]/ f2)×. We then see that G f (D1) is isomor-
phic to the wreath product G f2({1}) ∗ Em1 where m1 = | f1|. We remark that we can also get
this isomorphism by observing that f2R is a homogeneous set in G f (D1) and the required
isomorphism follows from [8, Theorem 5.5].

By the result from the previous section, we further have

G f2({1}) ∼= Grad( f2)({1}) ∗ Em2 ,

where m2 = | f2|/|rad( f2)|. Since the wreath product is associative, we have

G f (D1) ∼= Grad( f2)({1}) ∗ Em,

where m = | f |
|rad( f2)| . An identical argument and the fact that rad( f1), rad( f2) have the same

factorization type show that G f (D2) is isomorphic to Grad( f1)({1}) ∗ Em as well. We conclude
that G f (D1) ∼= G f (D2). □
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Remark 4.10. We thank Professor Ki-Bong Nam for some discussion which leads to the
statement for Proposition 4.9. Specifically, Professor Nam suggested us to study generalized
Euler numbers which we now recall. Let A be a PID, n ∈ A and m is a divisor of n. The
generalized Euler number φm(n) is the number of elements in the following set

Um(n) = {a ∈ A/n| gcd(a, m) = 1}.

When m = n, |Um(n)| is precisely the Euler totient function of n. In the setting of Proposi-
tion 4.9, SD1 = U f2( f1 f2) where SD1 is the generating set of the gcd-graph G f (D1).

We have a simple corollary which is a by-product of the proof for Proposition 4.9.

Corollary 4.11. Let f be a polynomial. Suppose that f has distinct irreducible factors f1, f2 of the
same degree. Let a1, a2 be two positive integers such that f a1

1 || f and f a2
2 || f . Let

D1 = Div( f a1
1 ) ∪ { f a1

1 },

and

D2 = Div( f a2
2 ) ∪ { f a2

2 }.

Then G f (D1) ∼= G f (D2).

Proof. For i ∈ {1, 2}, let hi = f / f ai
i . By the same proof as Proposition 4.9 applied to f = f ai

i hi

we know that

G f (Di) ∼= Grad(hi)({1}) ∗ E| f /rad(hi)|.

By definition, we know that rad(hi) and rad(h2) have the same factorization type. Since
these polynomials are monic, we conclude that f /rad(h1) ∼= f /rad( f2). Therefore, G f (D1) ∼=
G f (D2). □

For the second phenomenon described in Example 4.8, we found the following.

Proposition 4.12. Let f1, f2 be two irreducible polynomials of the same degree. Let n ≥ 2 be a
positive integer, f = f n

1 f2,

D1 = {1, f2, f 2
1 , . . . , f n

1 },

and

D2 = {1, f2, f1 f2}.

Then G f (D1) and G f (D2) are isomorphic.

Proof. By [8, Theorem 5.5], the ideal I f1 generated by f1 is a homogeneous set in G f (D1) as
well as G f (D2). Furthermore

G f (D1) ∼= G f1(1) ∗ G f n−1
1 f2

({ f1, f 2
1 , . . . , f n−1

1 }).

Similarly, we also have

G f (D2) ∼= G f1(1) ∗ G f n−1
1 f2

({ f2}).

Therefore, to complete the proof, we only need to show that

G f n−1
1 f2

({ f1, f 2
1 , . . . , f n−1

1 }) ∼= G f n−1
1 f2

({ f2}).
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We observe that G f n−1
1 f2

({ f1, f 2
1 , . . . , f n−1

1 }) is isomorphic to | f1| disjoint copies of G f n−2
1 f2

({1, f1, . . . , f n−2
1 })

and G f n−1
1 f2

({ f2}) is isomorphic to | f2| disjoint copies of G f n−1
1

({1}). By Theorem 3.5 and the
proof of Proposition 4.9 we have

G f n−2
1 f2

({1, f1, . . . , f n−2
1 }) ∼= K| f1| ∗ E| f1|n−2 ∼= G f n−1

1
({1}).

Summarizing all these isomorphisms, we conclude that G f (D1) and G f (D2) are isomorphic.
□

Remark 4.13. A by-product of the above proof is that if f1 and f2 are two irreducible poly-
nomials of the same degree then for each m ≥ 1

G f m
1 f2({1, f1, . . . , f m

1 }) ∼= K| f1| ∗ E| f1|m
∼= G f m+1

1
({1}).

This isomorphism provides a simple construction of two isomorphic gcd-graphs with differ-
ent moduli.

Remark 4.14. A conjecture of So [13, Conjecture 7.3] says that if n is an integer and D1, D2

are two distinct subsets of Div(n) then the two gcd-graphs over Z, Gn(D1) are Gn(D2) are
not isomorphic.

As we have shown, this conjecture is wrong if we consider gcd-graph over Fq[x]. We
remark, however, that, our constructions of isomorphic gcd-graphs of the form G f (D) where
f is fixed are based on a crucial fact that f has two irreducible factors of the same order. This
could happen over Fq[x] but not over Z . As a result, we wonder whether So’s conjecture
still holds for the family G f (D) under the additional assumption that irreducible factors of
f have different order.
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Kinzel, and Dan Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009), no. 1,
Research Paper 117, 13 pages.
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Tân, On prime Cayley graphs, arXiv preprint arXiv:2401.06062 (2024).
5. Dariush Kiani and Mohsen Molla Haji Aghaei, On the unitary Cayley graph of a ring, the electronic journal of

combinatorics (2012), P10–P10.
6. Walter Klotz and Torsten Sander, Some properties of unitary Cayley graphs, The electronic journal of combina-

torics (2007), R45–R45.
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