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ABSTRACT. Gcd-graphs represent an interesting and historically important class of inte-
gral graphs. Since the pioneering work of Klotz and Sander, numerous incarnations of
these graphs have been explored in the literature. In this article, we define and establish
some foundational properties of gcd-graphs defined over a general finite commutative
ring. In particular, we investigate the connectivity and diameter of these graphs. Addi-
tionally, when the ring is a finite symmetric Z /n-algebra, we give an explicit description
of their spectrum using the theory of Ramanujan sums that gives a unified treatment of
various results in the literature.

1. INTRODUCTION AND MOTIVATIONS

Gcd-graphs are an interesting and historically important class of integral graphs; i.e.,
graphs whose eigenvalues are integers. These graphs are first introduced by Klotz and
Sander in [6]. To set the context, let us briefly recall their definition. Let n be a pos-
itive integer and D a subset of proper divisors of n. The gcd-graph Gn(D) is defined
as follows: (1) The vertices of Gn(D) are elements of the finite ring Z /n and (2) two
vertices a, b are adjacent if gcd(a − b, n) ∈ D. Using the theory of Ramanujan sums, one
can describe the spectrum of the gcd-graph Gn(D) explicitly (see [6, Section 4]). More
precisely, its eigenvalues are indexed by elements of Z /n; namely (λm)m∈Z /n where

(1.1) λm = ∑
d∈D

c(m, n/d),

and

(1.2) c(m, n/d) = µ(t)
φ(n/d)

φ(t)
, where t =

n/d
gcd(n/d, m)

.

Here µ and φ are respectively the Möbius and Euler totient functions. A direct corollary
of this explicit description is that gcd-graphs are integral. In [11], So goes one step
further: he shows that gcd-graphs are the only integral circulant graphs. In [8], inspired
by the analogy between number fields and function fields, we study gcd-graphs over
a polynomial ring with coefficients in a finite field. We show that in this case, there
is a direct analog of Ramanujan sums that allows us to describe the spectrum of these
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gcd-graphs by an explicit formula similar to Eq. (1.1). Additionally, in [9], we generalize
So’s theorem by giving the necessary and sufficient conditions for a Cayley graph over
a finite symmetric algebra to be integral. As a by-product of this work, we construct
examples of finite symmetric algebras with arithmetic origins.

The goal of this article is to define and study the concept of gcd-graphs over arbitrary
finite rings. Our hope is to unify various constructions in the literature and lay the
groundwork for this area of research. In particular, we generalize some existing results
in [6, 8, 9, 10] to this general setting.

1.1. Outline. In Section 2 we introduce the notion of gcd-graphs over a finite ring
which naturally generalizes some previous work in [6, 8]. We also discuss various
equivalence conditions for a graph to be a gcd-graph. As a by-product, we describe
explicitly the structure of the generating set in a gcd-graph. In Section 3, we investigate
the connectivity of a gcd-graph. In particular, we provide a sharp upper bound on the
diameter of a gcd-graph which generalizes a theorem of Saxena, Severini, and Shparlin-
ski in [10]. Finally, in Section 4, we describe explicitly the spectrum of a gcd-graph over
a finite symmetric algebra. The main result of this section gives a unified treatment for
the spectra of various gcd-graphs previously studied in the literature.

2. GCD-GRAPHS OVER A FINITE RING

In this section, we introduce the notion of a gcd-graph defined over a finite ring that
unifies the definitions in [6, 8]. Let us first recall the definition of a Cayley graph defined
over a finite ring.

Definition 2.1. Let R be a finite ring and S ⊂ R \ {0} a symmetric subset. The Cayley
graph Γ(R, S) is defined as follow

(1) The vertex set of Γ(R, S) is R.
(2) Two vertices x, y ∈ R are adjacent if x − y ∈ S.

In practice, S is often called the generating set for Γ(R, S).

As noted in [3, Section 4] and further supported by [8, 9], Cayley graphs defined
over a ring exhibit richer structures compared to those defined over abstract abelian
groups. This feature arises from the interaction between the additive and multiplicative
structures of the ring R. In particular, ideals play a fundamental role in the studying of
these graphs.

For a ring that is not necessarily a quotient of a principal ideal domain, the notion of
the greatest common divisor is not well defined. As a result, to define gcd-graphs over
such a ring, we first need to revisit the definition of the greatest common divisor. We
recall that a positive integer n and two integers a, b, gcd(a, n) = gcd(b, n) if and only if
a and b generate the same ideal in the ring Z /n. This is also equivalent to the condition
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that a ≡ ub (mod n) for some u ∈ (Z /n)×. This property generalizes well for Artinian
rings, and in particular, to finite rings. More precisely

Lemma 2.2. (See [5, Lemma 2.1] Let R be an Artining ring. If Ra = Rb, then there exists
u ∈ R× such that b = ua.

From this perspective, a crucial observation here is that a generating set S in a finite
ring R such as Z /n or Fq[x] gives rise to a gcd-graph if and only if S is stable under the
action of R×; that is, if s ∈ S, then us ∈ S for all u ∈ R×. Motivated by this observation,
we introduce the following definition.

Definition 2.3. We say that Γ(R, S) is a gcd-graph if S is stable under the action of R×.

Remark 2.4. When S = R×, the graph Γ(R, R×) is known as a unitary Cayley graph (see
[1, 6]). This shows that the unitary Cayley graph over R is a special case of gcd-graphs.
Other examples, as explained previously, include the gcd-graphs defined in [6] for the
ring Z /n and the gcd-graphs defined in [8] for the ring Fq[x]/ f where Fq is a finite
field with q elements and f is a non-zero polynomial in Fq[x].

We provide below the necessary and sufficient conditions for a Cayley graph over R
to be a gcd-graph. These conditions are somewhat more explicit than Definition 2.3.
Furthermore, together with Corollary 2.7, this description will be important later on
when we study the spectrum of these gcd-graphs.

Proposition 2.5. Let R be a finite commutative ring and S a subset of R. Then the following
are equivalent.

(1) Γ(R, S) is a gcd-graph.
(2) There exist distinct nonzero principal ideals I1, I2, . . . , Ik such that for each r ∈ R,

r ∈ S if and only if there exists 1 ≤ i ≤ k such that Ii = Rr.

Proof. First, we claim that (2) =⇒ (1). Clearly, S is symmetric and 0 ̸∈ S. By definition,
we need to show that if s ∈ S and u ∈ R× then us ∈ S. Since s ∈ S, there exists an ideal
Ii with 1 ≤ i ≤ k such that Rs = Ik. Since u ∈ R×, Ik = Rs = Rus. By (2), this shows
that us ∈ S.

Let us show that (1) implies (2) as well. For each s ∈ S, Let Is = Rs be the ideal
generated by s. Let {I1, I2, . . . , Ik} be the set of all Is. We conclude that for each s ∈ S,
Is = Ii for some 1 ≤ i ≤ k. Conversely, if r ∈ R such that Rr ∈ {I1, I2, . . . , Ik}, then
Rr = Rs for some s ∈ S. By Lemma 2.2, we know that r = us for some u ∈ R×. Since
Γ(R, S) is a gcd-graph, S is stable under the action of R×. This shows that r ∈ S as
well. □

By Proposition 2.5 and to be consistent with the literature, we will denote the gcd-
graph Γ(R, S) by GR(D) where D = {I1, I2, . . . , Ik}. Our next goal is to provide an
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explicit description of the generating set S for a gcd-graph Γ(R, S). To do so, we first
recall the following definition from ring theory.

Definition 2.6. Let T be a subset of R. The annihilator ideal AnnR(T) is defined as

AnnR(T) = {a ∈ R | at = 0 for all t ∈ T}.

With this definition, we can now explicitly describe the generating set S.

Corollary 2.7. Let Γ(R, S) = GR(D) be a gcd-graph where D = {I1, I2, . . . , Ik}. Suppose
that Ii = Rxi. Then every element s ∈ S can be written uniquely in the form s = ûxi for some
1 ≤ i ≤ k, u ∈ (R/AnnR(Ii))

×, and û is a lift of u in R×.

Proof. By Proposition 2.5, every s ∈ S can be written in the form s = ûxi for some
1 ≤ i ≤ k and û ∈ R×. By definition, if u1 ≡ u2 (mod Ii) then u1xi = u2xi. Therefore,
the expression s = ûxi only depends on the class of û ∈ (R/AnnR(Ii))

×. □

While the requirement that each Ii is principal seems quite strict, we will show below
that finite rings which are quotients of the ring of integers in a global field have this
property. To state and prove this statement, we first fix some notations and set up the
background. Let K be a global field. Let OK be the integral closure in K of Z if char(K) =
0 or of Fq[t] if char(K) = p > 0. Let a be a nonzero ideal in OK.

Lemma 2.8. Let R = OK /a. Then R is a principal ring; i.e., all of its ideals are principal.

Proof. Let a = ∏d
i=1 p

ei
i be the factorization of a into a product of distinct prime ideals.

Then

R = OK /a ∼=
d

∏
i=1

OK /piei ∼=
d

∏
i=1

(OK)pi/pi
ei .

Here (OK)pi is the completion of OK at pi. It is known that (OK)pi is a discrete valu-
ation ring, and in particular, a principal ideal domain. This implies that each factor
(OK)pi/pi

ei is a principal ideal ring. Consequently, OK /a is a principal ideal ring as
well. □

Remark 2.9. By [9, Proposition 2.1], if R is a finite ring and Γ(R, S) is a gcd-graph, then
Γ(R, S) is integral. In Section 4, we will provide an explicit description of the spectrum
of a gcd-graph when R is a finite symmetric algebra using the theory of generalized
Ramanujan sums.

3. CONNECTIVITY OF GCD-GRAPHS

In this section, we study the connectivity of a gcd-graph Γ(R, S). By Proposition 2.5,
we can assume that Γ(R, S) = GR(D) where D = {I1, I2, . . . , Ik} is a set of principal
ideals in R; namely Ii = Rxi for some xi ∈ R. In this setting, the generating set S is
precisely the set of s such that Rs = Ii for some 1 ≤ i ≤ k. Equivalently, there exists
u ∈ R× such that s = uxi.
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We start with the simplest case which is a direct generalization of [8, Theorem 3.2].
We remark that the proof that we will give for this statement is not optimal in the sense
that it does not provide a sharp upper bound for the diameter of GR(D). However, we
include it here because it serves as a prototype for our argument in the general case.

Proposition 3.1. Assume that the unitary Cayley graph GR is connected. Then GR(D) is
connected if and only if

I1 + · · ·+ Ik = R.

Here I1 + · · ·+ Ik is the sum of these ideals.

Proof. Suppose that GR(D) is connected. Then S generates R as an abelian group. In
particular, we can find n1, n2, . . . , nh ∈ Z and si ∈ S such that

1 = n1s1 + n2s2 + · · ·+ nhsh.

Because Rsi ∈ {I1, I2, . . . , Ik}, the above equation shows that 1 ∈ I1 + I2 + · · ·+ Ik.
Since this sum is an ideal, we conclude that I1 + I2 + · · ·+ Ik = R.

Conversely, suppose that I1 + I2 + · · ·+ Ik = R. We claim that GR(D) is connected.
Let a ∈ R. By our assumption, we can find a1, a2, . . . , ak ∈ R such that a = ∑k

i=1 aixi.
Since GR is connected, for each 1 ≤ i ≤ k, we can write ai = ∑ni

j=1 mijsij, where mij ∈ Z

and sij ∈ R×. Consequently, we can write

a =
k

∑
i=1

ni

∑
j=1

mijsijxi.

Because sij ∈ R×, sijxi ∈ S. This shows that a belongs to the abelian group generated by
S. Since this is true for all a ∈ R, we conclude that GR(D) is connected. □

Remark 3.2. We can optimize the proof given in Proposition 3.1 by carefully controlling
the number of units sij that sum up to ai. By definition, this number is bounded above
by the diameter of GR. The above argument shows that when GR(D) is connected, its
diameter is bounded above by |D|diag(GR). We remark that by [1, Theorem 3.1], when
GR is connected, its diameter is at most 3; namely diag(GR) ≤ 3. Consequently, we have
a simple estimate diag(GR(D)) ≤ 3|D|. We also note while this upper bound is explicit,
it is not optimal in general. We refer to Theorem 3.6 for a better upper bound.

We now modify the above proof to the general case. We start with the following
lemma.

Lemma 3.3. Let R be a finite ring and R′ a quotient of R; namely there exists a surjective ring
homomorphism Φ : R → R′. Let D = {I1, I2, . . . , Ik} be a set of principal ideals in R and

D′ = {Φ(I1), Φ(I2), . . . , Φ(Ik)},

be the image of D in R′ (to avoid the tautological case, we adopt the convention of removing Ii

from D′ whenever Φ(Ii) = 0). Then the following statements hold.
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(1) Φ(Ii) is a principal ideal for each 1 ≤ i ≤ k.
(2) Let S′ be the generating set in R′ associated with D′ as described in Proposition 2.5.

Then Φ(S) ⊆ S′. Consequently, Φ : GR(D) → GR′(D′) is a graph morphism.
(3) Suppose that GR(D) is connected. Then GR′(D′) is also connected.

Proof. Let us first prove part (1). Suppose that Ii = Rxi for each 1 ≤ i ≤ k. Since Φ is
surjective, we conclude that Φ(Ii) = R′Φ(xi). This shows that Φ(Ii) is a principal ideal
generated by Φ(xi).

For the second part, we know from Corollary 2.7 that each s ∈ S can be written
in the form s = uxi for some u ∈ R×. We then see that Φ(s) = Φ(u)Φ(xi). Since
Φ(u) ∈ (R′)×, we conclude that R′Φ(s) = R′Φ(xi) and hence Φ(s) ∈ S′. This shows
that Φ : GR(D) → GR′(D′) is a graph homomorphism.

For the last part, since Φ : GR(D) → GR′(D′) is a graph homomorphism, Φ maps a
walk in GR(D) to a walk in GR′(D′). As a result, if GR(D) is connected, then GR′(D′) is
also connected. □

We now deal with the general case. As observed in [1, Theorem 3.1] and [3, Lemma
4.33], the obstruction for GR to be connected is the existence of multiple local factors
of R whose residues are F2 . Let us explain in more detail. By the structure theorem,
R ∼= ∏d

i=1 Ri where each Ri is a local ring. For simplicity, let us write R = R1 × R2 where
R1 (respectively R2) consists of local factors whose residue fields are F2 (respectively
̸= F2). Let J(R1) be the Jacobson radical of R1. Because R1 is a finite product of local
rings, J(R1) is the kernel of the map R1 → R1/J(R1) ∼= Fr

2 where r is the number of local
factors whose residue fields are F2 . Keeping the same notations, we have the following
lemma.

Lemma 3.4. (See also [1, Theorem 3.1]) Let (T,m) be a local ring whose residue field T/m is
not F2 . Then every element in T can be written as the sum of two units.

Proof. Let a ∈ T and ā the image of a in T/m. Since T/m has more than 2 elements, we
can write ā = ū1 + ū2 where ū1, ū2 ̸= 0. Consequently, there exist u1, u2 ∈ T and m ∈ m

such that a = u1 + u2 + m = u1 + (u2 + m). By their definition, u1, u2 + m ∈ T×. We
conclude that every element in T can be written as a sum of two units. □

Corollary 3.5. Every element in J(R1)× R2 can be written as the sum of two units in R.

Proof. Let (m, a) ∈ J(R1)× R2. By Lemma 3.4, we can write a = u1 + u2 where u1, u2 ∈
R×

2 . Let 2w be the characteristics of R1. We then have

(m, a) = (1, u1) + (2w − 1 + m, u2).

We remark that 2w − 1 + m ∈ R×
1 since its image in R1/J(R1) = Fr

2 is 1 which is a unit.
Consequently, (2w − 1+ m, u2) ∈ R×. We conclude that (m, a) is the sum of two units in
R. □
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Keeping the same notation as above, we are now ready to state and prove the follow-
ing theorem which is a direct generalization of [10, Theorem 4].

Theorem 3.6. Let Φ : R → R1/J(R1) = Fr
2 be the quotient ring homomorphism described

above. Then GR(D) is connected if and only if the following two conditions hold

(1) I1 + I2 + · · ·+ Ik = R;
(2) The cubelike graph GFr

2
(D′) is connected where

D′ = {Φ(I1), Φ(I2), . . . , Φ(Ik)}.

Furthermore, suppose that the above conditions hold. Let t be the smallest value of t such that
there exists 1 ≤ i1 < i2 < · · · < it ≤ k such that

Ii1 + Ii2 + · · ·+ Iit = R.

Then

t ≤ diag(GR(D)) ≤ 2t + diag(GFr
2
(D′)).

Proof. By Lemma 3.3, we know that (1) and (2) are necessary conditions. We will show
that they are sufficient as well. In fact, we will simultaneously show that GR(D) is con-
nected and diag(GR(D)) ≤ 2t + diag(GFr

2
(D′)). We remark that since the only unit in

Fr
2 is 1, the generating set for GF2(D′) is precisely the set S′ = {Φ(x1), Φ(x2), . . . , Φ(xk)}

where Ik = Rxk. Let a ∈ R be an arbitrary element in R. We claim that the distance from
a to 0 is at most 2t + diag(GFr

2
(D′)). In other words, we need to show that a can be

written as the sum of at most 2t + diag(GFr
2
(D′)) elements in S.

Since GF2(D′) is connected, we can write Φ(a) = ∑k
i=1 niΦ(xi) where ni ∈ {0, 1}

and ∑k
i=1 ni ≤ diag(GFr

2
)(D′). Let b := a − ∑k

i=1 nixi ∈ J(R1)× R2. By our assumption
Ii1 + Ii2 + · · · + Iit = R, we can write 1 = ∑t

m=1 aixim . As a result, we can write b =

∑t
m=1(bai)xim . By Corollary 3.5, for each 1 ≤ i ≤ t, we can write (bai) as a the sum of

two units in R. This shows that b can be written as a sum of at most 2t elements in S.
Consequently, a can be written as a sum of at most 2t + diag(GFr

2
(D′)) elements in S.

Since this is true for all a ∈ R, we conclude that

diag(GR(D)) ≤ 2t + diag(GFr
2
(D′)).

The lower bound t ≤ diag(GR(D)) follows from a similar argument. □

Remark 3.7. The proof for Theorem 3.6 shows GR(D) and GFr
2
(D′) have the same num-

ber of connected components.

In the special case where R = Z /n, our theorem recovers the following estimate in
[10, Theorem 3.1].
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Corollary 3.8. Suppose that r ≤ 1. Then GR(D) is connected if and only if I1 + I2 + . . . +
Ik = R. Furthermore, let t be the smallest value of t such that there exists 1 ≤ i1 < i2 < · · · <
it ≤ k such that

Ii1 + Ii2 + · · ·+ Iit = R.

We then have diag(GR(D)) ≤ 2t + 1.

Proof. If I1 + I2 + . . . + Ik = R then D′ ̸= ∅. Since r ≤ 1, this shows that GFr
2
(D′) is

connected and its diameter is at most 1. Theorem 3.6 then shows that diag(GR(D)) ≤
2t + 1. □

Remark 3.9. In [2], the authors determine the maximum diameter in the family of gcd-
graphs over Z /n for fixed n. It would be interesting to study the same problem for
gcd-graphs over an arbitrary ring.

4. SPECTRUM OF GR(D).

In this section, we describe the spectrum of a gcd-graph GR(D) over a finite symmet-
ric Z /n-algebra (some authors use the term Frobenius algebra, see [4]). We first recall
this definition.

Definition 4.1. Let R be a finite Z /n-algebra. We say that R is symmetric if there exists
a Z /n-linear functional ψ : R → Z /n such that the kernel of ψ does not contain any
non-zero ideal in R.

For the rest of this article, we will assume that R is a finite symmetric Z /n-algebra
equipped with a fixed linear functional ψ : R → Z /n. Character theory for the additive
group structure of R is quite simple. More specifically, by [9, Propsition 2.3], for each
character ψ̂ ∈ Hom(R, C×) of R, there exists a unique element r ∈ R such that for all
t ∈ R

ψ̂(t) = ζ
ψr(t)
n = ζ

ψ(rt)
n .

Here ζn ∈ C is a fixed primitive n-root of unity. Let us recall the following standard
lemma which we will need later on.

Lemma 4.2. Let G be an abelian group and ψ̂ : G → C× be a nontrivial character of G. Then
∑g∈G ψ̂(g) = 0.

Let x ∈ R and ψx : R/AnnR(x) → Z /n be the linear functional defined by

ψx(ā) = ψ(ax),

here ā ∈ R/AnnR(x) and a is any lift of ā in R. We can see that this map is well-defined.
Furthermore, we have the following.

Lemma 4.3. ψx is a non-degenerate linear function on R/AnnR(x). Consequently, R/AnnR(x)
is a symmetric Z /n-algebra.
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Proof. Let R′ = R/AnnR(x). Suppose that ψx is degenerate. Then, there exists b′ ∈ R′

such that b′ ̸= 0 and R′b′ ⊂ ker(ψx). Let b be a lift of b′ to R. Then, by the definition of
ψx we have ψ(xbR) = 0. This implies that the ker(ψ) contains the ideal Rbx. Since ψ is
non-degenerate, bx = 0 and hence b ∈ AnnR(x). This would imply that b′ = 0, which
is a contradiction. □

Remark 4.4. It is not true that if R is a finite symmetric algebra, then R/I is a symmetric
algebra for all ideals I of R. Let us provide a concrete example (see Corollary 4.7 for a
more general statement). Let p be a prime number. We claim that R = Fp[x, y]/(x2, y2)

is a symmetric algebra. In fact, every element in r ∈ R can be written in the form

r = a0 + a1x + a2y + a3xy.

We define a linear functional ψ : R → Fp by ψ(r) = a3. We can check that this is a non-
degenerate Fp-linear functional on R. On the other hand, the quotient Fp[x, y]/(x, y)2

of R is not a symmetric Fp-algebra. In fact, suppose that σ : Fp[x, y]/(x, y)2 → Fp is
a Fp-linear functional on Fp[x, y]/(x, y)2. If σ(x) = σ(y) = 0 then ker(σ) contains the
ideal (x, y). Otherwise, ker(σ) contains the non-zero ideal generated by σ(x)y − σ(y)x.
This shows that, in all cases, σ is degenerate.

We also remark that the construction of the symmetric algebra mentioned in Re-
mark 4.4 could be generalized. We have the following observation.

Proposition 4.5. Let R be a finite symmetric Z /n-algebra. Let f ∈ R[x] be a monic polynomial
of degree n. Then R[x]/ f is also a finite symmetric Z /n-algebra.

Proof. Let ψ : R → Z /n be a Z /n-linear functional on R. We will now define a non-
degenerate Z /n-linear functional on R[x]/ f . Each element of R[x]/ f can be written
uniquely as

g = an−1xn−1 + · · ·+ a1x + a0.

This shows that R[x]/ f is a finite ring of order |R|n. We define ψ̂ : R[x]/ f → Z /n
by the rule ψ̂(g) = ψ(an−1). By an identical argument as the proof of [8, Proposition
6.7], we can see that ψ̂ is non-degenerate. We conclude that R[x]/ f is a finite symmetric
Z /n-algebra. □

Remark 4.6. We recall that a Galois ring is a ring of the form R = Z[x]/(pn, f (x)) =

(Z /pn)[x]/ f (x) where f is a monic polynomial. Proposition 4.5 shows that Galois rings
are finite symmetric Z /pn-algebras.

Another corollary of Proposition 4.5 is the following.

Corollary 4.7. Every finite commutative ring is a quotient of a finite symmetric algebra.

Proof. Let T be a commutative ring and n the characteristic of T. Since T is finite, there
exists α1, α2, . . . , αk such that T is generated by α1, α2, . . . , αk; namely T = Z /n[α1, α2, . . . , αk].
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Let us prove by induction that Z /n[α1, α2, . . . , αi] is a quotient of a finite symmetric
Z /n-algebra for each 0 ≤ i ≤ k. If i = 0 then T = Z /n which is a symmetric algebra.
Suppose that Z /n[α1, α2, . . . , αi] is a quotient of a symmetric algebra, say R. We claim
that Z /n[α1, α2, . . . , αi+1] = Z /n[α1, α2, . . . , αi][αi+1] is a quotient of a symmetric alge-
bra as well. Since T is finite, there exists a monic polynomial f ∈ Z /n[α1, α2, . . . , αi][x]
such that f (ai+1) = 0. Let f̂ be a lift of f to R. Then we have the following quotient
maps

R[x]/ f̂ → Z /n[α1, α2, αi][x]/ f → Z /n[α1, α2, . . . , αi][αi+1].

By Proposition 4.5, R[x]/ f̂ is a finite symmetric Z /n- algebra. This shows that the
inductive statement holds for i + 1. By the principle of mathematical induction, T is a
quotient of a finite symmetric Z /n-algebra. □

We now define generalized Ramanujan sum.

Definition 4.8. Let g ∈ R. The generalized Ramanujan sum c(g, R) is defined as follows

c(g, R) = cψ(g, R) = ∑
a∈R×

ζ
ψ(ga)
n .

Our goal is to give an explicit description for c(g, R). In particular, we will show that
c(g, R) does not depend on the choice of ψ as long as ψ is non-degenerate. Similar to
the case with Ramanujan sums over Z as described in Eq. (1.2), doing so would require
some generalization of the Möbius and Euler totient functions. The definition for the
Euler function φ(I) is quite straightforward.

Definition 4.9. Let T be a finite ring. The Euler number of T is defined as

φ(T) = |T×|,

where T× is the set of invertible elements in T.

The definition of the Möbius function µ(T) is a little more complicated. First, we
recall that by the structure theorem for Artinian rings, the finite ring T is isomorphic to
a finite product of local rings T ∼= ∏d

i=1 Ri. The following definition is inspired by the
classical Möbius function.

Definition 4.10.

µ(T) =


1, if |T| = 1,

0, if there exists 1 ≤ i ≤ d such that Ri is not a field,

(−1)d, otherwise.

Example 4.11. Let us consider the case R is a finite quotient of the ring of integers in a
global field; i.e, R = OK /a where a is a non-zero ideal in OK. Suppose that a = ∏d

i=1 p
ei
i

10



is the factorization of a into a product of prime ideals, then

OK /a ∼=
d

∏
i=1

OK /pei
i .

By definition, µ(OK /a) = 0 if there exists 1 ≤ i ≤ d such that ei > 1. Otherwise,
µ(OK /a) = (−1)d. With this interpretation, we can see the µ(OK /a) is a direct gener-
alization of the classical Möbius function.

We discuss a simple property for the behavior of the Euler and Möbius functions with
respect to direct products.

Lemma 4.12. Let R be a finite ring. Suppose that R = R1 × R2. Then µ(R) = µ(R1)µ(R2)

and φ(R) = φ(R1)φ(R2).

Proof. Both statements follow directly from the definition of µ and φ. □

With these preparations, we can now calculate the generalized Ramanujan sum c(g, R).
We first calculate the Ramanujan sum c(g, R) when g = 1.

Proposition 4.13. c(1, R) = µ(R).

Proof. By the structure theorem, R is isomorphic to a product of local rings; i.e., R ∼=
∏d

i=1 Ri, where Ri is a local ring. Let ψi be the linear functional on Ri induced by ψ. Since
ψ is non-degenrate, ψi is non-degenerate as well. Furthermore, by [7, Satz1] we have
cψ(1, R) = ∏d

i=1 cψi(1, Ri). Together with Lemma 4.12 about the multiplicative property
of the Möbius function under direct products, it is sufficient to prove the statement
when R is a local ring. Namely, we need to show that if R is a local ring then

cψ(1, R) =

0, if R is not a field,

−1 otherwise.

Let m be the maximal ideal of R and ψ̂ = ζ
ψ
n be the chacteracter of R associated with ψ.

Because R× = R \m, we have

(4.1) cψ(1, R) = ∑
a∈R×

ψ̂(a) = ∑
a∈R

ψ̂(a)− ∑
a∈m

ψ̂(a).

Since ψ̂ is a nontrivial character of R, we know that ∑a∈R ψ̂(a) = 0. Additionally, be-
cause m is an additive subgroup of R, the restriction of ψ̂ to m is a character of m (con-
sidered as an abstract abelian group). Since ψ is non-degenerate, the restriction of ψ̂ to
m is a non-trivial character unless m = 0. By Lemma 4.2, we conclude that

∑
a∈m

ψ̂(a) =

0, if m ̸= 0

1 otherwise.
11



By Eq. (4.1), we conclude that if R is a local ring then

cψ(1, R) =

0, if R is not a field,

−1 otherwise.

□

We now consider the general case.

Theorem 4.14.

c(g, R) =
φ(R)

φ(R/AnnR(g))
c(1, R/AnnR(g)) =

φ(R)
φ(R/AnnR(g))

µ(R/AnnR(g)).

Proof. By definition c(g, R) = ∑a∈R× ζ
ψ(ga)
n . We remark that if a − b ∈ AnnR(g) then

ga = gb and hence ψ(ga) = ψ(gb). We also note that since the reduction map Φ :
R× → (R/AnnR(g))× is a surjective group homomorphism, each u ∈ (R/AnnR(g))×

has exactly φ(R)
φ(R/AnnR(g)) lifts to R×. Therefore

c(g, R) =
φ(R)

φ(R/AnnR(g)) ∑
a∈(R/AnnR(g))×

ζ
ψ(ga)
n =

φ(R)
φ(R/AnnR(g)) ∑

a∈(R/AnnR(g))×
ζ

ψg(a)
n .

By Lemma 4.3, ψg is a non-degenerate linear functional on R/AnnR(g). By Proposi-
tion 4.13, we know that

∑
a∈(R/AnnR(g))×

ζ
ψg(a)
n = µ(R/AnnR(g)).

We conclude that

c(g, R) =
φ(R)

φ(R/AnnR(g))
µ(R/AnnR(g)).

□

We can now describe explicitly the spectrum of a gcd-graph.

Theorem 4.15. Let GR(D) be a gcd-graph with D = {I1, I2, . . . , Ik} and Ii = Rxi is a
principal ideal. Then, the spectrum of GD(D) is the multiset {λg}g∈R where

λg =
k

∑
i=1

c(g, R/AnnR(xi)).

Here c(g, R/AnnR(xi)) is the Ramanujan sum with an explicit formula given in Theorem 4.14.

Proof. Let S be the generating set associated with D as described in Proposition 2.5. By
the circulant diagonalization theorem, the spectrum of GR(D) = Γ(R, S) is the multiset
{λg}g∈R where

λg = ∑
s∈S

ζ
ψ(gs)
n =

k

∑
i=1

[
∑

s,Rs=Ii

ζ
ψ(gs)
n

]
.

12



We remark that by Corollary 2.7, if s ∈ R such that Rs = Ii = Rxi then s has a unique
representation of the form s = ûxi where u ∈ (R/AnnR(xi))

× and û is a fixed lift of u
to R×. With this presentation, we can write

∑
s,Rs=Ii

ζ
ψ(gs)
n = ∑

u∈(R/AnnR(xi))×
ζ

ψ(guxi)
n = ∑

u∈(R/AnnR(xi))×
ζ

ψxi (gu)
n = c(g, R/AnnR(xi)).

Here we recall that ψxi is the induced linear functional on R/AnnR(xi). We conclude
that λg = ∑k

i=1 c(g, R/AnnR(xi)). □

Corollary 4.16. Suppose that g′ = ug for some u ∈ R×. Then λg = λg′ .
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