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ABSTRACT. For each positive integer n, we define the divisor graph Dn whose vertex set is
the set of divisors of n, and two vertices are adjacent if one is a divisor of the other. This type
of graph is a special case of graphs associated with a partial order, which have been widely
studied in the literature. In this work, we determine various graph-theoretic invariants of
divisor graphs, such as their clique and independence numbers, and their planarity. We also
discuss various spectral properties that are discovered by our numerical experiments. Our
argument is number-theoretic in nature, making it accessible to a wide range of readers.

1. INTRODUCTION

The divisor graph Gn on n nodes is the graph whose vertices are {1, 2, . . . , n} and edges
are (a, b) where either a | b or b | a. Due to its arithmetical nature, these graphs have been
widely studied in the literature. For example, there exists an extensive line of work inves-
tigating the longest simple path on Gn (see [5, 8, 11, 12]). Additionally, the determination
of the independent and clique numbers of Gn has also attracted significant interest (see, for
example, [1, 2, 7]).

While studying the gcd-graphs in [9], we naturally rediscovered Gn. Specifically, in our
attempts to understand certain induced structures on the gcd-graphs and to prove several
statements about their properties, we realized the importance of understanding the connec-
tion scheme between the given divisor subset. Therefore, quite naturally, for our purposes,
we restrict ourselves to the induced subgraph Dn of Gn on the set of divisors of n. We note
that the definition of Dn is also introduced in [13, Definition 19]. To start our discussion, let
us provide the following formal definition of Dn.

Definition 1.1. The divisor graph Dn is the graph with the following data

(1) The vertice set of Dn is the set of all divisors of n.
(2) Two vertices a, b are adjacent if a | b or b | a.

The graph Dn is a special case of compatibility graphs; i.e. graphs which are associated
with an order (we will explain this interpretation in more detail in Section 2.1). Therefore,
Dn is somewhat more structured than Gn. For example, a classical theorem of Dilworth
shows that compatibility graphs are perfect (see [4, 6]). In particular, Dn is a perfect graph.
Furthermore, we can explicitly calculate some of its variants, such as the clique number
(and hence the chromatic number since Dn is perfect), the independence number, and their
planarity. More surprisingly, we found that the spectrum of Dn has several interesting and
mysterious properties. Although some of them can be explained by number-theoretic or
set-theoretic arguments, others are somewhat more mysterious.
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1.1. Outline. In Section 2, we discuss various graph-theoretic properties of Dn. Most ar-
guments in this section are quite elementary, which makes it accessible to a wide range of
readers. Our main discoveries are in Section 3 where we discuss some variational properties
of the spectrum of Dn when n varies. In particular, we find that the case where n has at most
two prime factors has some quite surprising patterns.

2. GRAPH THEORETIC PROPERTIES OF Dn

2.1. Isomorphism classes and equivalent interpretations. For each natural number n, we
can factor n into a product of prime factors

n = pa1
1 pa2

2 . . . pad
d .

If we require further that 1 ≤ a1 ≤ a2 ≤ . . . ≤ ad then this factorization is unique.

Definition 2.1. We call (a1, a2, . . . , ad) the factorization type of n. We will write

F(n) = (a1, a2, . . . , ad).

We also define the degree deg(n) of n to be deg(n) = ∑d
i=1 ai.

We now describe an equivalent definition of Dn. Let S be the following set

S = {(α1, α2, . . . , αd) | 0 ≤ αi ≤ ai ∀1 ≤ i ≤ d}

Definition 2.2. Let α = (α1, α2, . . . , αd) and β = (β1, β, . . . , βd) be two vectors in Rd . We say
that α ≤ β if and only if αi ≤ βi for all 1 ≤ i ≤ d.

We can see that S together with this order is a partially ordered set. Let Div(n) be the
set of divisors of n. For each d ∈ Div(n), d has a unique factorization of the form ∏d

i=1 pαi
i

where 0 ≤ αi ≤ ai. As a result, we have a canonical a map Φ : Div(n) → S defined by
Φ(d) = (α1, . . . , αd). By the fundamental theorem of arithmetic, Φ is a bijection. Further-
more, d1|d2 if and only if Φ(d1) ≤ Φ(d2). We conclude that Dn is ismorphic to the compati-
bility graph associated with (S,≤). In particular, the isomorphism class of Dn only depends
on the factorization type of n. While this interpretation of Dn may seem almost tautological,
it proves useful—especially when constructing the graph using the Python library networkx,
as it allows us to avoid explicit factorization of large numbers.

2.2. Degrees and edges in Dn.

Proposition 2.3. If the factorization type of n is (a1, · · · , ad) then the graph Dn has v :=
d

∏
i=1

(ai + 1)

vertices and e = v
(
(a1+2)···(ad+2)

2d − 1
)

edges.

Proof. The vertex count is just the standard result on the number of divisors of an integer.
To count edges, we orient the edges by considering an edge joining vertices b, c to originate
at b and terminate at c if b|c. Then, if for i = 1,· · · , d we have 0 ≤ xi ≤ ai, the number of

edges originating at b =
d

∏
i=1

pxi
i is

d
∏
i=1

(ai + 1− xi)− 1. (We subtract 1 as we do not include a
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loop at b.) So the total number of edges is given by
a1

∑
x1=0
· · ·

ad

∑
xd=0

(
d

∏
i=1

(ai + 1− xi)− 1

)
Reindexing by setting wi = ai + 1− xi, we can rewrite this as

a1+1

∑
w1=1
· · ·

ad+1

∑
wd=1

(
d

∏
i=1

wi − 1

)
=

a1+1

∑
w1=1
· · ·

ad+1

∑
wd=1

d

∏
i=1

wi − v

=

(
a1+1

∑
w1=1

w1

)
· · ·
(

ad+1

∑
wd=1

wd

)
− v

=
(a1 + 1)(a1 + 2)

2
· · · (ad + 1)(ad + 2)

2
− v =

= v
(
(a1 + 2) · · · (ad + 2)

2d − 1
)

□

2.2.1. Vertices of Minimal Degree.

Definition 2.4. Let ei be the unit vector with 0 in position j, 1 ≤ j ( ̸= i) ≤ d and 1 in position
i. Vectors x = (x1, · · · , xd) and x± ei for some i will be called close. A sequence x1, · · · , xn

is a chain iff xi and xi+1 are close, 1 ≤ i ≤ n− 1.

Definition 2.5. A vector x = (x1, · · · , xd) is called extremal in coordinate i if xi = 0 or xi = ai,
and is called extremal if it is extremal in all coordinate positions. The term nonextremal
applies otherwise in both situations.

Remark 2.6. The degree of a vertex x = (x1, · · · , xd) is easily seen to be given by

f (x) :=
d

∏
i=1

(ai + 1− xi) +
d

∏
i=1

(xi + 1)− 2.

For 1 ≤ i ≤ d let ∆i(x) = f (x + ei) − f (x) = ∏
j ̸=i

(xj + 1) − ∏
j ̸=i

(aj + 1− xj), and note that

∆i(x) does not depend on the value of xi. It follows that if ∆i(x) < 0,

x− xiei, x− (xi − 1)ei, · · · , x + (ai − xi)ei)

is a chain through x, joining the vectors (x1, · · · , xi−1, 0, xi+1, · · · , xd) and
(x1, · · · , xi−1, 1, xi+1, · · · , xd) extremal in coordinate i, with strictly decreasing degrees. Sim-
ilarly if ∆i(x) > 0, we get such a chain with strictly increasing degrees, and if ∆i(x) = 0, the
chain maintains constant degree.

Proposition 2.7. A vertex of minimal degree can always be found among the extremal vertices. In
fact, any vertex of minimal degree satisfies the ”stability condition” ∆i(x) = 0 at every nonextremal
coordinate, and admits a chain from x to an extremal vertex of minimal degree where every member
of this chain has minimal degree.

Proof. Let x be any vertex with minimal degree. The argument in the above remark implies
that x, if not alreadly extremal, must satisfy ∆i(x) = 0 at every nonextremal coordinate (else
we can move to a close vertex of lower degree); choosing a nonextremal coordinate position
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i, x occurs in a chain with constant degree leading to a vertex differing only in coordinate i
where it is now extremal. Since all vertices in this chain are still of minimal degree, the sta-
bility condition is still intact. Repeat with any remaining nonextremal coordinate positions
until arriving at an extremal vertex. The construction ensures that the degree is not changed
in this process. □

Proposition 2.8. An extremal vertex x has minimal degree is and only if ∏
i∈S

(ai + 1) + ∏
j∈T

(aj + 1)

is as small as possible among extremal vertices, where S = {i | xi = ai} and T = {j | xj = 0}.

Proof. This follows simply from the formula for f (x), which for an extremal vertex x com-
putes to ∏

i∈S
(ai + 1) + ∏

j∈T
(aj + 1)− 2. □

2.3. Connectedness and bipartite property. The graph Dn is always connected since 1 and
n are adjacent to all other vertices. Furthermore, we have the following property.

Proposition 2.9. Let a, b be two vertices in Dn. Let d(a, b) be the distance between a and b. Then

d(a, b) =

1 if (a, b) ∈ E(Dn)

2 otherwise.

Proof. If a and b are adjacent then d(a, b) = 1. Otherwise, we would have the path a→ 1→ b
and hence d(a, b) = 2. □

Proposition 2.10. Let G be the induced graph on Dn \ {1, n}. Then, G is connected unless n = pq
where p, q are distinct prime numbers; i.e, the factorization type of n is (1, 1).

Proof. If n = pq where p, q are distinct prime then we can see that the induced subgraph on
{p, q} is the empty graph and hence it is not connected. Conversely, suppose that the factor-
ization type of n is not (1, 1). If n has exactly one prime divisor then the induced subgraph on
Dn \ {1, n} is a complete graph and therefore it is connected connected. Let us now assume
that n has at most two prime factors. Since a vertex is adjacent to all its divisor, it is sufficient
to show that if p, q are distinct prime divisor of n then p, q are connected. This is clear since
we have the path p→ pq→ p. □

Proposition 2.11. Dn is bipartite if and only F(n) = (1); i.e, n is a prime number.

Proof. If n is not a prime number then there exists 1 < d < n such that d | n. In this case
{1, d, n} forms a triangle in Dn. As a result, Dn cannot be bipartite. □

2.4. Clique and independent numbers of Dn.

Proposition 2.12. Suppose that F(n) = (a1, a2, . . . , ad). Let X be a maximal clique in Dn. Then

|X| = 1 +
d

∑
i=1

ai = 1 + deg(n).

Proof. We will prove by induction on d that there is a clique of size 1 + deg(n). For d = 1,
n = pa1

1 is a prime power and hence Dn is the complete graph on a1 + 1 nodes. In this case,
X = V(Dn) is a clique of size 1+deg(n). Let us assume that the statement is true for d. Let us
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show that it is true for d+ 1 as well. Let us write n = ∏d+1
i=1 pai

i . Let X = {h1, h2, . . . , h1+∑d
i=1 ad
}

be a clique of size 1 + ∑d
i=1 ai in D∏d

i=1 p
ai
i

. We can then check that X′ = {1, pd+1, . . . , pad−1
d+1 } ∪

pad
d+1X is a clique of size 1 + ∑d+1

i=1 ai in D∏d+1
i=1 p

ai
i

.
Conversely, we show that a clique in Dn has at most 1 + deg(n) elements, In fact, let

X = {h1, h2, . . . , hq} where h1 < h2 < . . . < hq. We claim that |X| ≤ 1 + deg(n). Since X
is a clique and hi < hi+1, hi|hi+1 for each 0 ≤ i ≤ q − 1. This shows that 0 ≤ deg(h1) <

deg(h2) . . . < deg(hq) ≤ deg(n). Consequently, we conclude that |X| = q ≤ 1 + deg(n). □

For the independence number of Dn, we have the following result.

Proposition 2.13. (See [3, Theorem 1]) Let S be a subset of Dn consisting of vertices of the same
degree ⌊deg(n)

2 ⌋. Then S is a maximal independence set in Dn. In particular, the independence number
of Dn is precisely |S|.

2.4.1. Perfectness and coloring of Dn. Since Dn is perfect, the chromatic number of Dn is equal
to its clique number; i.e, χ(Dn) = 1 + deg(n). In fact, we can provide an explicit color-
ing on Dn with 1 + deg(n) colors. Specifically, we can define a coloring map c : Dn →
{0, 1, . . . , deg(n)} by the rule c(m) = deg(m). Clearly, two numbers with the same degree
cannot be adjacent, c is a coloring map.

2.5. Planarity of Dn. In this section, we classify all Dn which are planar. By exploring Dn

with some small values of n, we can see that F(n) = (a1, a2, . . . , ad) with d ≤ 2 and ∑d
i=1 ai ≤

3 then Dn is planar. See Fig. 1 for a planar embedding when F(n) = (1, 2) and Fig. 2 for a
planar embedding when F(n) = (3).

FIGURE 1. A planar
embedding of D45

FIGURE 2. A planar
embedding of D27.

The following theorem completely classify n such that Dn is planar.

Proposition 2.14. The graph Dn is planar if and only if one of the following holds:

(1) n = pr, p prime, 0 ≤ r ≤ 3
(2) n = pq, p, q prime
(3) n = p2q, p, q prime
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Proof. We make use of the fact that a graph cannot be planar if it contains a subgraph isomor-
phic to K3,3 or to a subdivision of K5. Since if Dn is planar and m|n, Dm (a subgraph, induced
or not) is also planar, and if Dn is not planar and n|m, Dm is also not planar, it suffices to
check the following cases (where p, q, r are distinct primes)

(1) Dp3 is planar (see Fig. 2) and Dp4 is not. This is true since Dpr is the complete graph
Kr+1 which is planar iff r + 1 ≤ 4.

(2) Dpq and Dp2q are planar (see Fig. 1).
(3) Dp2q2 is not planar. For it contains a subgraph which is a subdivision of K5.

1

p2q

p2q2 q

p

pq

(4) Dp3q is not planar. It contains the following subgraph which isomorphic to K3,3.

1

p

q

pq

p2q

p3q

(5) Dpqr is not planar.
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1

pqr

pq r

p

q rq

pr

It fails the known necessary planarity condition e ≤ 3v− 6. Alternatively, we note
that it contains a subgraph which is a subdivision of K5.

□

Remark 2.15. By some elementary calculations, we can in fact see that Dn is planar if and
only if it satisfies condition e ≤ 3v− 6.

3. SPECTRUM OF Dn

In this section, we study the spectrum of Dn.

3.1. Variation of the spectra of Dn. For each n, let fn be the characteristics polynomial of
Dn.

Proposition 3.1. Let n be a natural number. Let p, q be prime numbers such that gcd(n, pq) = 1.
Then fn | fnpq. Furthermore, if n is squarefree, then f 2

n | fnpq.

Proof. Suppose first that p, q are distinct primes and that gcd(n, pq) = 1. Let 1 = a1 < · · · <
ak = n be the divisors of n, and let B be the adjacency matrix of Dn with respect to this order.
Let the k× k matrix C be defined by Cij = 1 if ai|aj and 0 otherwise. (Then B = C+CT− 2Ik.)
Now list divisors of npq in the order a1, · · · , ak, pa1, · · · , pak, qa1, · · · , qak, pqa1, · · · , pqak. With
respect to this order, the adjacency matrix for Dnpq is

M =


B C C C

CT B 0 C
CT 0 B C
CT CT CT B


Write Ik for the k × k identity matrix and 0k for an k × k matrix of 0’s. The characteristic
polynomial of M can be analyzed as follows, where for the third equality, we have subtracted
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the second row of blocks from the third:

fnpq = det(M− λIn+4) = det


B− λIk C C C

CT B− λIk 0k C
CT 0k B− λIk C
CT CT CT B− λIk



= det


B− λIk C C C

CT B− λIk 0k C
0k λIk − B B− λIk 0k

CT CT CT B− λIk



= det


Ik 0k 0k 0k

0k Ik 0k 0k

0k 0k B− λIk 0k

0k 0k 0k Ik

det


B− λIk C C C

CT B− λIk 0 C
0k −Ik Ik 0k

CT CT CT B− λIk


= det(B− λIk) · (a polynomial in λ) = fn · (a polynomial in λ).

This shows fn | fnpq.
For the second assertion, suppose that we can write n = n0r, where r is a prime number,

and gcd(r, n0) = 1. (This condition is satisfied, for example, when n > 1 is squarefree.)
Let a1 = 1 < a2 < · · · < ak be the divisors of n0. Let B0 be the adjacency matrix of Dn0 .
Let C be the matrix defined by

Cij = 1 ⇐⇒ ai | aj.

List the divisors of n0rpq in the order:

a1, . . . , ak︸ ︷︷ ︸
(1)

, ra1, . . . , rak︸ ︷︷ ︸
(2)

, pa1, . . . , pak︸ ︷︷ ︸
(3)

, pra1, . . . , prak︸ ︷︷ ︸
(4)

,

qa1, . . . , qak︸ ︷︷ ︸
(5)

, qra1, . . . , qrak︸ ︷︷ ︸
(6)

, pqa1, . . . , pqak︸ ︷︷ ︸
(7)

, pqra1, . . . , pqrak︸ ︷︷ ︸
(8)

.

We note that
Cij = 1 ⇐⇒ ai | aj or rai | raj.

Then the adjacency matrix for Dn0rpq is of the form:

M =



B0 C C C C C C C
CT B0 0 C 0 C 0 C
CT 0 B0 C 0 0 C C
CT CT CT B0 0 0 0 C
CT 0 0 0 B0 C C C
CT CT 0 0 CT B0 0 C
CT 0 CT 0 CT 0 B0 C
CT CT CT CT CT CT CT B0


=


B A A A

AT B 0 A
AT 0 B A
AT AT AT B

 ,

where

B =

[
B0 C
CT B0

]
, A =

[
C C
0 C

]
.
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We have

|M− λIN | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λI C C C C C C C
CT B0 − λI 0 C 0 C 0 C
CT 0 B0 − λI C 0 0 C C
CT CT CT B0 − λI 0 0 0 C
CT 0 0 0 B0 − λI C C C
CT CT 0 0 CT B0 − λI 0 C
CT 0 CT 0 CT 0 B0 − λI C
CT CT CT CT CT CT CT B0 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λI C C C C C C C
0 B0 − λI −B0 + λI 0 0 C −C 0

CT 0 B0 − λI C 0 0 C C
CT CT CT B0 − λI 0 0 0 C
0 0 −B0 + λI −C B0 − λI C 0 0
0 0 −CT −B0 + λI CT B0 − λI 0 0
0 CT −CT 0 0 B0 − λI −B0 + λI 0

CT CT CT CT CT CT CT B0 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here, I = Ik and we the following (block) row operations:

(2) : R2 ← R2 − R3

(5) : R5 ← R5 − R3

(6) : R6 ← R6 − R4

(7) : R7 ← R6 − R7.

Thus

|M− λIN | =±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 B0 − λI C 0 0
0 0 0 0 CT B0 − λI 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λI C C C C C C C
0 B0 − λI −B0 + λI 0 0 C −C 0

CT 0 B0 − λI C 0 0 C C
CT CT CT B0 − λI 0 0 0 C
0 0 −I 0 I 0 0 0
0 0 0 −I 0 I 0 0
0 CT −CT 0 0 B0 − λI −B0 + λI 0

CT CT CT CT CT CT CT B0 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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In the above product of determinants, the first determinant is fn. For the second determinant,
which we denote temporarily as S, we move the block rows R2 and R7 to the top, we obtain

S = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 B0 − λI −B0 + λI 0 0 C −C 0
0 CT −CT 0 0 B0 − λI −B0 + λI 0

B0 − λI C C C C C C C
CT 0 B0 − λI C 0 0 C C
CT CT CT B0 − λI 0 0 0 C
0 0 −I 0 I 0 0 0
0 0 0 −I 0 I 0 0

CT CT CT CT CT CT CT B0 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Now in the above determinant, we move the block columns C2, C6, C3 and C7 (in this order)
to the left, we imply that

S = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λI C −B0 + λI −C 0 0 0 0
CT B0 − λI −CT −B0 + λI 0 0 0 0
C C C C B0 − λI C C C
0 0 B0 − λI C CT C 0 C

CT 0 CT 0 CT B0 − λI 0 C
0 0 −I 0 0 0 I 0
0 I 0 0 0 −I 0 0

CT CT CT CT CT CT CT B0 − λI

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − λI C 0 0 0 0 0 0
CT B0 − λI 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I 0 −I 0 0 0 0 0
0 I 0 −I 0 0 0 0
C C C C B0 − λI C C C
0 0 B0λI C CT C 0 C

CT 0 CT 0 CT B0 − λI 0 C
0 0 −I 0 0 0 I 0
0 I 0 0 0 −I 0 0

CT CT CT CT CT CT CT CT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ± fn × (a polynomial in λ).

Hence fnpq is divisible by f 2
n . □

3.2. Special eigenvalues. Let λ be a real number. Then λ is an eigenvalue of Dn if there is a
vector (vd)d|n such that

∑
(d,m)∈E(Dn)

vm = λvd.

The case λ = −2 is special because we can rewrite this as

(3.1) ∑
m|d

vm + ∑
d|m|n

vm = 0.

We will use this fact to construct an eigenvector associated with λ = −2 under some condi-
tions on n.
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Let µ be the Moebius function. This function has the property that for each positive integer
m

∑
d|m

µ(m) =

1 if m = 1

0 else.

Proposition 3.2. Suppose that µ(n) = −1. Let v = (vd)d|n be the vector defined by

vd =

0 if d ∈ {1, n}

µ(d) else.

Then v is an eigenvector associated with the eigenvalue λ = −2.

Proof. We verify that Eq. (3.1) holds for all d|n. If d ̸∈ {1, n} then we have

∑
m|d

vm + ∑
d|m|n

vm = ∑
m|d

µ(m)− µ(1) + µ(d) ∑
m| nd

µ(m)− µ(n) = 0.

If d = 1 then Eq. (3.1) becomes

v1 + ∑
m|n

vm = ∑
d|n

µ(d)− µ(1)− µ(n) = 0.

Similarly, we can check that Eq. (3.1) holds for d = n. □

Lemma 3.3. Let X be a clique set in a connected graph G. Suppose further that both X and G \ X
are homogeneous sets in G. Then −1 is an eigenvalue of G with multiplicity at least |X| − 1.

Proof. By definition, G is a joined union of the induced graph on X and G \X. The conclusion
then follows from the proof of [10, Proposition 3.1]. More specifically, the adjacency matrix
of G is of the form

A =

(
AX J
J AG\X

)
.

Let v = (v1, . . . , v|X|) be a vector such that ∑|X|i=1 vi = 0. Then, w = (v1, . . . , v|X|, 0, . . . , 0) is an
eigenvector for AG associated with the eigenvalue λ = −1. □

Corollary 3.4. −1 is an eigenvalue of Dn for every n ≥ 2.

Proof. X = {1, n} sastifies the conditions of Lemma 3.3. □

3.3. The case where n has at most two prime factors.

Proposition 3.5. Let Ma be an adjacency matrix for Dpqa where p, q are distinct primes, a ≥ 0.
Then det(Ma) = det(Ma+6).
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Proof. We note that det(M5) = 1, and explicitly that, with respect to the vertex ordering
1, q, · · · , q5, p, pq, · · · , pq5

M5 =



0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 0 0 1 1 1 1
1 1 1 0 1 1 0 0 0 1 1 1
1 1 1 1 0 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 0 1 1 1 1
1 1 1 0 0 0 1 1 0 1 1 1
1 1 1 1 0 0 1 1 1 0 1 1
1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0


and

M−1
5 =



−2 1 2 1 −1 −2 −2 −1 1 2 1 −1
1 −2 −1 0 1 1 2 0 −1 −1 0 1
2 −1 −4 −1 2 3 3 2 −2 −3 −1 2
1 0 −1 −2 1 2 1 1 0 −2 −1 1
−1 1 2 1 −2 −1 −2 −1 1 2 0 −1
−2 1 3 2 −1 −4 −3 −2 1 3 2 −2
−2 2 3 1 −2 −3 −4 −1 2 3 1 −2
−1 0 2 1 −1 −2 −1 −2 1 2 1 −1
1 −1 −2 0 1 1 2 1 −2 −1 0 1
2 −1 −3 −2 2 3 3 2 −1 −4 −1 2
1 0 −1 −1 0 2 1 1 0 −1 −2 1
−1 1 2 1 −1 −2 −2 −1 1 2 1 −2


Order the vertices of Ma as 1, q, · · · , qa, p, pq, · · · , pqa, and the vertices of Ma+6 as
1, q, · · · , qa, p, pq, · · · , pqa, qa+1, · · · , qa+6, pqa+1, · · · pqa+6 . Now if we write 1r,s for an r × s
matrix of 1’s and 0r,s for an r× s matrix of 0’s, we have

Ma+6 =

[
A B
C D

]

where A = Ma, B =

[
1a+1,6 1a+1,6

0a+1,6 1a+1,6

]
, C = BT, and D = M5. Since D is invertible,

det(Ma+6) = det(D)det(A− BD−1C).

But det(D) = 1, and using the explicit computation of D−1 = M−1
5 above, BD−1C =

02a+2,2a+2. (We can check this by verifying 11,12D−1112,1 = [01,6 11,6]D−1112,1 = 11,12D−1

[
06,1

16,1

]
=

[01,6 11,6]D−1

[
06,1

16,1

]
= 0.) Therefore det(Ma+6) = det(A) = det(Ma). □
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Proposition 3.6. For distinct primes p, q and a ≥ 0, Dpqa has eigenvalue 0 if and only if a ≡ 1
mod 6.

Proof. After explicitly computing det(Ma) = −1, 0, 3, 5, 4, 1 for a = 0, 1, 2, 3, 4, 5 respectively,
this follows immediately from the previous proposition. □

Proposition 3.7. If n = paqb and a ≡ b ≡ 1 (mod 6) then 0 is an eigenvalue of Dn.

Proof. Suppose that
n = puqv with u ≡ v ≡ 1 (mod 6).

List the divisors of n in the order:

1, q, q2, . . . , qv, p, pq, pq2, . . . , pqv, . . . , pu, puq, . . . , puqv.

The adjacency matrix of Dn is of the form:

M =



V U U · · · U
UT V U · · · U
UT UT V · · · U

...
...

...
. . .

...
UT UT UT · · · V


,

where

V =



0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0


(v+1)×(v+1)

and U =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1


(v+1)×(v+1)

Consider the following column matrices of size (v + 1)× 1:

A =
[

0 1 1 0 −1 −1 · · · 0 1 1 0 −1 −1 0 1
]T

A′ =
[
−1 0 1 1 0 −1 · · · −1 0 1 1 0 −1 −1 0

]T
.

(In A, the block
[
0 1 1 0 −1 −1

]
is repeated (v − 1)/6 times. The matrix A′ is ob-

tained from A by left-shifting.) Similary, we consider following column matrices of size
(v + 1)× 1:

B =
[
−1 −1 0 1 1 0 · · · −1 −1 0 1 1 0 −1 −1

]T
,

B′ =
[

0 −1 −1 0 1 1 · · · 0 −1 −1 0 1 1 0 −1
]T

and
C =

[
1 0 −1 −1 0 1 · · · 1 0 −1 −1 0 1 1 0

]T
,

C′ =
[

1 1 0 −1 −1 0 · · · 1 1 0 −1 −1 0 1 1
]T

.

Let X be the following column matrix of size [(u + 1)(v + 1)]× 1:

X =
[

A A′ B B′ C C′ · · · A A′ B B′ C C′ A A′
]T

.
13



(In X, the block
[

A A′ B B′ C C′
]

is repeated (u− 1)/6 times.)
We claim MX = 0. In particular, it shows that 0 is an eigenvalue of M.
We need to show that for every non-negative integers s, t with s+ t = u ≡ 1 (mod 6), one

has [
UT · · · UT V U · · · U

]
X = 0.

Here in the first matrix, UT appears s times and U appears t times.
Note that A + A′ + B + B′ + C + C′ = 0. Hence UT(A + A′ + B + B′ + C + C′) = 0 =

U(B + B′ + C + C′ + A + A′). We only need to consider the following six cases.

Case 1: s ≡ 0 (mod 6) and t ≡ 1 (mod 6). In this case, it suffices to show that[
V U

] [A
A′

]
= 0.

Let
[
V U

] [A
A′

]
=


s1

s2
...

. We have

s1 = ∑
i≥2

ai + ∑
i≥1

a′i = 1 + (−1) = 0.

On the other hand, the difference between the (i + 1)-st row and the ith row of [V | U] is the
row

[ 0 · · · 0 1 − 1 0 · · · 0 | 0 · · · 0 − 1 0 · · · 0 ] .

Here, the first−1 is in the i + 1-th position and the second−1 is in the (s+ 1) + i-th position.
We deduce that

si+1 − si = ai − ai+1 − a′i = 0.

Hence si = 0, for every i.

Case 2: s ≡ 1 (mod 6) and t ≡ 0 (mod 6). In this case, it suffices to show that[
UT V

] [A
A′

]
= 0.

Let
[
UT V

] [A
A′

]
=


s1

s2
...

. We have

s1 = a1 + ∑
i≥2

a′i = 0 + 0 = 0.

On the other hand, the difference between the (i + 1)-st row and the ith row of [UT | V] is
the row

[ 0 · · · 0 1 0 · · · 0 | 0 · · · 0 1 − 1 0 · · · 0 ] .

Here, the first 1 is in the i + 1-th position and the second 1 is in the (s + 1) + i-th position.
We deduce that

si+1 − si = ai+1 + a′i − a′i+1 = 0.

Hence si = 0, for every i.
14



Using similar arguments as in the previous two cases, we can show that

VB + UB′ = [ s s · · · s ]T = UTB + VB′,

where s = ∑i≥2 bi + ∑i≥1 b′i = −2 = b1 + ∑i≥2 b′i , and that

VA′ + UB = UT A′ + VB = [−2 − 2 · · · − 2 ]T,

VB′ + UC = UTB′ + VC = 0,

VC + UC′ = UTC + VC′ = [ 2 2 · · · 2 ]T.

Case 3: s ≡ 2 (mod 6) and t ≡ 5 (mod 6). In this case, it suffices to show that

[
UT UT V U U U U U

]



A
A′

B
B′

C
C′

A
A′


= 0.

We have

UT(A + A′) + VB + U(B′ + C + C′ + A + A′) = −VA′ + UT A′ + VB−UB

= (UT A′ + VB)− (VA′ + UB) = 0.

Case 4: s ≡ 3 (mod 6) and t ≡ 4 (mod 6). In this case, it suffices to show that

[
UT UT UT V U U U U

]



A
A′

B
B′

C
C′

A
A′


= 0.

We have

UT(A + A′ + B) + VB′ + U(C + C′ + A + A′)

= UT(A + A′) + VB + U(B′ + C + C′ + A + A′) + UTB + VB′ −VB−UB′

= UTB + VB′ − (VB + UB′) = 0.
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Case 5: s ≡ 4 (mod 6) and t ≡ 3 (mod 6). In this case, it suffices to show that

[
UT UT UT UT V U U U

]



A
A′

B
B′

C
C′

A
A′


= 0.

We have

UT(A + A′ + B + B′) + VC + U(C′ + A + A′)

= UT(A + A′ + B) + VB′ + U(C + C′ + A + A′) + UTB′ + VC−VB′ −UC

= UTB′ + VC− (VB′ + UC) = 0.

Case 6: s ≡ 5 (mod 6) and t ≡ 2 (mod 6). In this case, it suffices to show that

[
UT UT UT UT UT V U U

]



A
A′

B
B′

C
C′

A
A′


= 0.

We have

UT(A + A′ + B + B′ + C) + VC′ + U(A + A′)

= UT(A + A′ + B + B′) + VC + U(C′ + A + A′) + UTC + VC′ −VC−UC′

= UTC + VC′ − (VC + UC′) = 0.

□
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