
SUPERCHARACTER THEORY AND APPLICATIONS TO
RAMANUJAN SUMS OVER A FINITE FROBENIUS RING

TUNG T. NGUYEN, NGUYEN DUY TÂN, ENRIQUE TREVIÑO

ABSTRACT. The theory of Ramanujan sums has been playing a fundamental role in sev-
eral subfields of mathematics. They appear in the theory of special values of zeta func-
tions, spectral graph theory, representation theory, and analytic number theory. Recent
work has shown that classical Ramanujan sums can also be interpreted as a super-Fourier
transform via the theory of supercharacters for the ring Z /n. In this article, building
upon our recent work on supercharacters over an arbitrary finite Frobenius ring, we ex-
plore additional arithmetical properties of Ramanujan sums. Our approach provides
a unified framework that generalizes various results in the literature regarding these
sums. As a by-product, we also describe a new criterion for determining when a finite
commutative ring is Frobenius, which could be of independent interest to the algebraist
community.

1. INTRODUCTION

Let n be a positive integers and ζn be a fixed primitive n-root of unity. The sum

(1.1) cn(m) = ∑
1≤j≤n

gcd(j,n)=1

ζ
mj
n ,

is known in the literature as a Ramanujan sum. Although Dirichlet and Dedekind had
considered this sum in the mid-19th century, it was Ramanujan who first realized its
importance in the early 20th century, using it to investigate several problems in number
theory ([8, Page 159]). For instance, Ramanujan used these sums to derive new expres-
sions for arithmetical functions such as the divisor function. Ramanujan sums have
since found applications in various subfields of mathematics, including representation
theory, analytical number theory, sieve theory, graph theory, and physics. In graph the-
ory, for example, these sums have been used to study the spectra of certain classes of
graphs. We refer the reader to [7, Section 1.1] for a more extensive discussion on the
history and applications of Ramanujan sums.

Our own interest in Ramanujan sums stems from their recurring appearance in our
research. These sums, together with Gauss sums, first appear in our calculations of
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the spectrum of the generalized Paley graph associated with a quadratic character (see
[13]). They reappear again in our investigation of Fekete polynomials associated with
principal Dirichlet characters. More precisely, we recall that the n-th Fekete polynomial
is defined as

(1.2) Fn(x) = ∑
1≤a≤n gcd(a,n)=1

xa.

By definition, cn(m) is precisely the value of Fn at an n-root of unity; namely Fn(ζm
n ).

Using the explicit formula for cn(m), we can show that, if n is squarefree and d is a
divisor of n, the cyclotomic polynomial Φd is not a factor of Fn (see [4, Corollary 2.7]).
Later on, while working on prime Cayley graphs (see [5]), we found the work of Klotz-
Sander and So on unitary graphs and gcd-graphs where Ramanujan sums play central
roles (see [11, 22]). For example, in [22], So uses Ramanujan sums to classify all integral
circulant graphs, which effectively resolves a conjecture of Klotz and Sander on integral
circulant graphs stated in [11]. While reading more work on gcd-graphs, we soon real-
ized that the theory of gcd-graphs can be generalized to an arbitrary finite commutative
ring. Furthermore, when the underlying ring is a Frobenius ring, we can even develop a
general theory of Ramanujan sums and utilize them to calculate explicitly the spectra of
the associated gcd-graphs This circle of ideas has led us to various work in this research
direction (see [15, 17, 16, 19]). In this article, building upon recent advances on super-
character theory and its applications to classical Ramanujan sums (see [6, 7, 20]), we
study some further arithmetical properties of generalized Ramanujan sums. Along the
way, we discuss some connections with spectral graph theory. Additionally, we investi-
gate the determinant of a matrix associated with Ramanujan sums. Using the theory of
supercharacters for Frobenius rings developed in [20], we determine the precise value
of this determinant.

We remark that the generalized theory of Ramanujan sums over Frobenius rings was
pioneered by Lamprecht in his 1953 work [12]. However, his contributions in this area
have not received widespread recognition as it should in the mathematical community
(see [9] for some further valuable historical context on Lamprecht’s work on Frobenius
rings). Given the significance of Lamprecht’s early insights, we feel it is important to
acknowledge his foundational role in this line of research.

1.1. Outline. The article is structured as follows. In Section 2.1, we review the theory
of supercharacters over a finite abelian group. The key ideas in this section have been
previously discussed in [7]. Our main contribution here is the introduction of certain re-
lated sums, which appear naturally in the spectral description of certain Cayley graphs.
In Section 2.2, we apply the results from the previous section to the case where R is a
finite Frobenius ring. More precisely, we explain the existence of a natural supercharac-
ter theory on R and show how this theory is closely related to the theory of Ramanujan
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sums developed in [17]. Using the general results in Section 2.1, we derive various
orthogonality relations for these Ramanujan sums. We also explain how our results
recover some well-known formulas in the literature. Furthermore, we give an explicit
formula for the k-moment of these Ramanujan sums for each k ≥ 1. In Section 3, we
explicitly describe the supercharacter table for the associated supercharacter theory out-
lined in Section 2.2. Additionally, we show that determinant of this supercharacter table
can determine whether a finite commutative ring is Frobenius or not. Our main theo-
rem provides a unified proof for various special cases studied in [21] (for the case where
R is Z /n) and [14] (for the case where R is a quotient of Fq[x]). Finally, in Section 4,
we provide a generalization of Kluyver’s formula, which also unifies various scattered
results in the literature.

2. FROBENIUS RINGS AND THEIR SUPERCHARACTER THEORIES

2.1. Supercharacter theory and supercharacter table of a finite abelian group. We first
recall the definition of a supercharacter theory on a finite abelian group G. We refer the
reader to [2, 6, 7] for further discussions on this topic. We remark that, in order to keep
a consistent set of notations, our discussion here closely aligns with [7, Section 2].

Definition 2.1. A supercharacter theory on G is a pair (K,X ) where K = {K1, K2, . . . , Km}
be a partition of G and X = {X1, X2, . . . , Xm} a partition of the dual group Ĝ =

Hom(G, C×) of characters of G which satisfies the following conditions

(1) {0} ∈ K;
(2) |X | = |K|;
(3) For each Xi ∈ X , the character sum

σi = ∑
χ∈Xi

χ

is constant on each K ∈ K;
(4) As explained in [20, Section 2], to do spectral theory for certain associated graphs,

it is beneficial to add one more condition to (K,X ); namely for a fixed X ∈ X
the sum ∑k∈Ki

χ(k) does not depend on the choice of χ ∈ X. We will denote this
sum by ΩKi(X) or more simply Ωi(X).

For a supercharacter theory (K,X ), the corresponding supercharacter table is the m×
m matrix S = (σi(Kj))

m
i,j=1. More precisely,

(2.1) S =

K1 K2 · · · Km

σ1 σ1(K1) σ1(K2) · · · σ1(Km)

σ2 σ2(K1) σ2(K2) · · · σ2(Km)
...

...
... . . . ...

σm σm(K1) σm(K2) · · · σm(Km)
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As explained in [7], the matrix S satisfies several orthogonality properties. To describe
these properties, we recall some concepts. First, the space of complex-valued functions
f : G → C is equipped with the following natural inner product.

(2.2) ⟨ f1, f2⟩ =
1
|G| ∑

g∈G
f1(g) f2(g).

A function f : G → C is called a superclass function if f is constant on each superclass in
{K1, K2, . . . , Km}. For a superclass function f , we will denote by f (Ki) the value of f at
an element x ∈ Ki. The space of all superclass functions with respect to the pair (K,X )

will be denoted by S . This space S inherits the inner product structure from Eq. (2.2).
For any two functions f1, f2 ∈ S , their inner product can be expressed more concisely
as:

(2.3) ⟨ f1, f2⟩ =
1
|G|

m

∑
ℓ=1

|Kℓ| f1(Kℓ) f2(Kℓ).

As explained in [7], {σi}m
i=1 forms an orthogonal basis for S . More precisely, we have

(2.4) ⟨σi, σj⟩ = |Xi|δi,j,

where δ is the Kronecker function and |Xi| is the size of Xi since

|Xi| = ||Xi||22 :=
√

∑
χ∈Xi

|χ(1)|2.

By Eq. (2.3) and Eq. (2.4) we have the following formula (see [7, Equation 2.4])

(2.5)
1
|G|

m

∑
ℓ=1

|Kℓ|σi(Kℓ)σj(Kℓ) = |Xi|δi,j.

Let

D = diag
(√

|K1|, . . . ,
√
|Km|

)
,

L =
1√
|G|

diag

(
1√
|X1|

, . . . ,
1√
|Xm|

)
.

Then by Eq. (2.5), we have

(SD)(SD)∗ = |G|diag (|X1|, . . . , |Xm|) .

Furthermore, if we let U = LSD then

U =
1√
|G|

σi(Kj)
√
|Kj|√

|Xi|

n

i,j=1
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and UU∗ = I; namely U is a unitary matrix. Since U∗U = I, we obtain the following
orthogonality condition.

(2.6)

√
|Ki||Kj|
|G|

m

∑
ℓ=1

σℓ(Ki)σℓ(Kj)

|Xℓ|
= δi,j.

We state here a simple corollary of the fact that U is unitary, which we will use later
on.

Proposition 2.2. We have the following equality

det(S)2 = |G|m
ℓ

∏
i=1

|Xi|
|Ki|

.

In particular, if |Ki| = |Xi| for each 1 ≤ i ≤ m, then |det(S)| = G
m
2 .

We remark that by [20, Proposition 2.3], we have

Ωj(Xi)|
|Kj|

=
σi(Kj)

|Xi|
.

As a result, each orthogonality relation for σi(Kj) can be converted to an equivalent one
for Ωj(Ki) and vice versa. For example, we can rewrite U as

U =
1√
|G|

Ωj(Xi)
√
|Xi|√

|Kj|

n

i,j=1

,

and Eq. (2.6) is equivalent to

(2.7)
1

|G|
√
|Ki||Kj|

m

∑
ℓ=1

|Xℓ|Ωi(Xℓ)Ωj(Xℓ) = δi,j.

We remark that since we assume Ki = −Ki, Ωj(Xℓ) ∈ R (see [20, Proposition 2.3]). As
a result, Eq. (2.7) is equivalent to

(2.8)
1

|G|
√
|Ki||Kj|

m

∑
ℓ=1

|Xℓ|Ωi(Xℓ)Ωj(Xℓ) = δi,j.

In particular, when i = j, we have

(2.9)
1

|Ki||G|
m

∑
ℓ=1

|Xℓ|Ωi(Xℓ)
2 = 1.
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2.2. Orthogonality relations for Ramanujan sums over a finite Frobenius ring. In this
section, we apply the results to the case where the abelian group G is the additive struc-
ture of a finite ring R. Here, we exploit the fact that a ring has another structure; namely
the multiplicative structure. In general, it is unclear how to construct a supercharac-
ter theory for a finite commutative ring. However, as explained [20], there is a class of
rings that such a theory naturally exists; namely the class of finite commutative Frobe-
nius ring. We first recall this concept.

Definition 2.3. Let R be a finite commutative ring. We say that R is a Frobenius ring if R
is a Z /n-algebra equipped with a non-degenerate Z /n linear functional ψ : R → Z /n.
Here, non-degenerate means that the kernel of ψ does not contain any non-zero ideal in
R.

By [9, 12], there are some other equivalent characterizations of a finite Frobenius ring.
For example, a local ring is Frobenus iff its socle module is cyclic. In other words, there
exists an element e ∈ R \ {0} such that Re is contained in all non-zero ideals in R. A finite
commutative ring is Frobenius if and only if it is a product of finite local Frobenius ring.

Let ζn := e
2πi

n be a fixed primitive n-root of unity and χ : R → C× be the character
defined by χ(a) = ζ

ψ(a)
n . By [16, Proposition 2.4], the dual group Hom(R, C×) is a cyclic

R-module generated by χ; namely every character of R is of the form χr where χr(a) =
χ(ra). We note that by the definition of χ, the following identity holds for all x, y ∈ R.

χx(y) = χy(x) = χxy(1) = χ(xy).

We now recall the definition of the Ramanujan sum c(g, R)

Definition 2.4. Let g ∈ R. The generalized Ramanujan sum c(g, R) is defined as follows

c(g, R) = cψ(g, R) = ∑
a∈R×

χg(a) = ∑
a∈R×

χ(ga).

We have two remarks about this definition. First, cn(m) is precisely c(m, Z /n). There-
fore, c(g, R) is a natural generalization of the classical Ramanujan sum defined in Eq. (1.1).
Second, at first glance, it seems that cψ(g, R) depends on ψ. However, as explained in
[18, Theorem 4.14], cψ(g, R) is independent of ψ. In fact, we have

(2.10) c(g, R) =
φ(R)

φ(R/AnnR(g))
c(1, R/AnnR(g)) =

φ(R)
φ(R/AnnR(g))

µ(R/AnnR(g)).

Here AnnR(g) is the annihilator ideal of g; namely

AnnR(g) = {r ∈ R | gr = 0}.

Additionally, φ is the generalized Euler function; φ(R) = |R×|. Finally, µ is the gen-
eralized Möbius function defined as follows. We recall that by the Artin-Wedderburn
structure theorem for Artinian rings, R is isomorphic to a finite product of local rings
R ∼= ∏d

i=1 Ri. Then, µ(R) is defined by the following rule.
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µ(T) =


1, if |T| = 1,

0, if there exists 1 ≤ i ≤ d such that Ri is not a field,

(−1)d, otherwise.

Let K1, K2, . . . , Km be the orbits of R under the action of R×. We will define τ(R) = m
since in the case R = Z /n, τ(R) = τ(n)–the number of positive divisors of n. By
definition, the elements in each Ki are associates. Without loss of generality, we will
assume that K1 = R×. For each 1 ≤ i ≤ m, let

Xi = {χg|g ∈ Ki}.

For convenience, we will denote by Kg (respectively Xg) the class that contains g (respec-
tively χg). This is consistent with our convention that K1 = R×. Additionally, we will
use the notations σx(Ky) and Ωx(Ky) for the appropriate sums. With these preparations,
we are now able to recall the following proposition.

Proposition 2.5. (See [20, Theorem 4.1]) The pair (K,X ) where K = {K1, K2, . . . , Km} and
X = {X1, X2, . . . , Xm} is a supercharacter theory for (R,+). Furthermore, for each 1 ≤ i ≤ m

|Xi| = |Ki| = φ(R/AnnR(gi)),

where gi is an element in Ki.

Proof. The fact that (K,X ) is a supercharacter theory is a direct consequence of [20,
Theorem 4.1]). Let us now prove the second part about the size of |Kg| = |Xg|. Let
Stab(g) be the stabilizer of g. We have

Stab(x) = {u ∈ R×|ux = u} = {u ∈ U|(u− 1) ∈ AnnR(x)} = ker(R× → (R/AnnR(g))×).

By the stabilizer theorem, we have |Kg| =
φ(R)

Stab(x)
and hence by the first isomorphism

of groups

|Kg| = |Vg| = φ(R/AnnR(g)).

□

We now explain the connection between the Ramanujan sums c(g, R) and the values
σi(Kj) and Ωi(Kj) described in Section 2.1. By definition,

c(g, R) = ΩK1(Xg) = Ω1(Xg).

We now use the orthogonality properties described in Section 2.1 to derive several arith-
metical properties of Ramanujan sums. We first have the following two theorems, which
generalize a result of Carmichael in [3] for classical Ramanujan sums.
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Theorem 2.6.

∑
g∈R

c(g, R)2 = |R|φ(R),

where φ(R) = |K1| = |R×|.

Proof. Using the facts that |Xi| = |Ki|, c(g, R) = Ω1(Xg) and Eq. (2.9), we have

∑
g∈R

c(g, R)2 =
m

∑
ℓ=1

[
∑

g∈Kℓ

c(g, R)2

]

=
m

∑
ℓ=1

|Kℓ|Ω1(Xℓ)
2 =

m

∑
ℓ=1

|Xℓ|Ω1(Xℓ)
2 = |K1||R| = φ(R)|R|.

□

While the statement the first orthogonality condition described in Theorem 2.6 fol-
lows directly from supercharacter theory, we can also prove it using a direct and ele-
mentary argument.

Proof. We have

∑
g∈R

c(g, R)2 = ∑
g∈R

(
∑

a∈R×
χ(ga)

)(
∑

b∈R×
χ(gb)

)
= ∑

a∈R×
∑

b∈R×
∑
g∈R

χ(g(a + b)) = ∑
a∈R×

∑
b∈R×

∑
g∈R

χa+b(g)

The inner sum is 0 when a + b ̸= 0 and it is |R| when a + b = 0. Once a is fixed, there is
a unique b such that a + b = 0, therefore

∑
g∈R

c(g, R)2 = φ(R)|R|.

□

We describe another proof for Theorem 2.6 using graph theory.

Proof. We recall that the unitary Cayley graph GR = Γ(R, R×) is the graph with the
following data

(1) The vertex set of GR is R.
(2) Two vertices a, b are adjacent if and only if a − b ∈ R×.

As explained in [17, Theorem 4.6] (see also [20, Theorem 4.6] for a generalization) the
spectrum of GR is precisely {c(g, R)}g∈R. By the walk-counting formula, we have

∑
g∈R

c(g, R)2 = ∑
g∈R

degGR
(g) = φ(R)|R|.

□

We discuss a slight generalization of Theorem 2.6. First, we introduce the following
definition.
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Definition 2.7. We define k-th moment of Ramanujan sums as

Mk(R) = ∑
g∈G

c(g, R)k.

By definition, we have M0(R) = |R|, M1(R) = 0, M2(R) = φ(R)|R|.

Remark 2.8. If R1 and R2 are two Frobenius rings, then Mk(R1) = Mk(R2) for all k ≥ 0
if and only if GR1 and GR2 are cospectral. In particular, this happens if GR1 and GR2 are
isomorphic. [10, Theorem 5.3] and [14, Theorem 4.1] show that these two graphs are
isomorphic if and only |R1| = |R2| and Rss

1
∼= Rss

2 . Here Rss = R/Rad(R) with Rad(R)
being the Jacobson radical of R. In [14, Proposition 4.5], we show some examples of
R1, R2 which are not isomorphic but their associated unitary Cayley graphs are. In fact,
when these rings are a finite quotient of Fq[x], [14, Proposition 4.5] also determines the
number of isomorphism classes of unitary Cayley graphs.

Proposition 2.9. Let R = ∏d
i=1 Ri is a product of finite local Frobenius rings. For each 1 ≤

i ≤ d, let fi be the order of the residue field of Ri. Then

Mk(R) = |R|k
d

∏
i=1

[(
1 − 1

fi

)k
+ (−1)k fi − 1

f k
i

]
Proof. We observe that Mk(R) is multiplicative with respect to direct products; namely
Mk(R1)Mk(R2) = Mk(R1 × R2). This follows directly from the property that for r1 ∈ R1

and r2 ∈ R2

c((r1, r2), R1 × R2) = c(r1, R1)c(r2, R2).

Therefore, it is enough to prove this formula when R is a local ring with the maximal
ideal m and f = R/m is the order of the residue field. As explained after Definition 2.3,
there exists an element e ∈ R \ {0} such that Re is contained in all non-zero ideals in R.
If g ∈ R such that g ̸= 0 and g is not associated to e then AnnR(g) is a proper sub-ideal
of m. Consequently µ(R/AnnR(g)) = 0 and hence c(g, R) = 0. If g = 0 then

c(0, R) = φ(R) = |R|
(

1 − 1
f

)
.

If g is associated with e (there are exactly f − 1 such elements) then by the short exact
sequence

1 → 1 +m → R× → (R/m)× → 1,

we have

c(g, R) = c(e, R) = − φ(R)
φ(R/m)

= −|m| = −|R|
f

We conclude that

Mk(R) = |R|k
[(

1 − 1
f

)k
+ (−1)k f − 1

f k

]
□
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We show that the graph-theory method can be used to provide another proof for the
derivation of the third moment M3(R) of Ramanujan sums.

Proposition 2.10. Let R = ∏d
i=1 Ri is a product of finite local Frobenius rings. For each

1 ≤ i ≤ d, let fi be the order of the residue field of Ri. Then

M3(R) = ∑
g∈R

c(g, R)3 = |R|3
d

∏
i=1

(
1 − 1

fi

)(
1 − 2

fi

)
.

Proof. We know that M3(R) is precisely the number of closed walks of length 3 in GR.
By [1, Proposition 2.3], for two fixed vertices a, b ∈ GR which are adjacent, the number
of vertices c which are adjacent to both of them is

|R|
d

∏
i=1

(
1 − 2

fi

)
.

Therefore, the number of closed walks of length 3 is

M3(R) = φ(R)|R| × |R|
d

∏
i=1

(
1 − 2

fi

)
= |R|3

d

∏
i=1

(
1 − 1

fi

)(
1 − 2

fi

)
.

□

We now discuss the second orthogonality property.

Theorem 2.11. Let r1, r2 ∈ R such that r1 and r2 are not associates. Then

∑
g∈R

c(r1g, R)c(r2g, R) = 0.

We first give a proof using supercharacter theory.

Proof. For each r ∈ R

c(gr, R) = ∑
a∈R×

χgr(a) = ∑
a∈R×

χg(ra) =
φ(R)

|Stab(r)|Ωr(Xg).

Here, for each r ∈ R, Stab(r) is the stabilizer of r. Using this formula, Eq. (2.8), and the
fact that Kr1 ̸= Kr2 , we then see that

∑
g∈R

c(r1g, R)c(r2g) =
m

∑
ℓ=1

[
∑

g∈Ki

c(r1g, R)c(r2g)

]

=
φ(R)

|Stab(r1)|
φ(R)

|Stab(r2)|
m

∑
ℓ=1

|Xℓ|Ωr1(Xℓ)Ωr2(Xℓ) = 0.

□

Similar to Theorem 2.6, we can also give a more direct proof of Theorem 2.11.
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Proof.

∑
g∈R

c(r1g, R)c(r2g, R) = ∑
g∈R

(
∑

a∈R×
χgr1(a)

)(
∑

b∈R×
χr2g(b)

)
= ∑

a∈R×
∑

b∈R×
∑
g∈R

χ(g(r1a + r2b)) = ∑
a∈R×

∑
b∈R×

∑
g∈R

χr1a+r2b(g).

The inner sum is 0 when r1a + r2b ̸= 0, but because Rr1 ̸= Rr2, then r1a + r2b ̸= 0 for
any a, b ∈ R×. The proof follows. □

We now use Theorem 2.6 and Theorem 2.11 to explain some well-know orthogonal-
ity relations for classical Ramanujan sums. For m, n ∈ Z, we note that the classical
Ramanujan sum cn(m) is precisely c(m, Z /n).

Corollary 2.12. We have the following orthogonality relations

(1) Suppose that n is a multiple of k. Then
n

∑
m=1

ck(m)2 = φ(k)n.

(2) Let p, q be two distinct numbers. Then
pq

∑
m=1

cp(m)cq(m) = 0.

Proof. Let us prove the first statement. By definition, ck(m) only depends on m modulo
k. Therefore

n

∑
m=1

ck(m)2 =
n
k

k

∑
m=1

ck(m)2 =
n
k ∑

m∈Z /k
c(m, Z /k)2.

By Theorem 2.6 we know that

∑
m∈Z /k

c(m, Z /k)2 = kφ(k).

This shows that
n

∑
m=1

ck(m)2 = nφ(k).

We now prove the second orthogonality relation. We remark that

cp(m) = ∑
1≤j≤p

gcd(j,p)=1

ζ
mj
p =

φ(p)
φ(pq) ∑

1≤j≤pq
gcd(j,pq)=1

ζ
mj
p =

φ(p)
φ(pq) ∑

1≤j≤pq
gcd(j,pq)=1

ζ
mqj
pq =

φ(p)
φ(pq)

c(mq, Z /pq).

Consequently
pq

∑
m=1

cp(m)cq(m) =
φ(p)φ(q)

φ(pq)2 ∑
m∈Z /pq

c(mq, Z /pq)c(mp, Z /pq).

Since p ̸= q, p and q are non-associate elements in Z /pq. As a result, the above sum is
0 by Theorem 2.11.

□
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3. RAMANUJAN DETERMINANT

Let R be a finite commutative Frobenius ring. We will again denote by (K,X ) the
supercharacter theory on (R,+) associated with R× as explained in Proposition 2.5. For
each 1 ≤ i ≤ m, fix a representative xi of Ki. We first have the following theorem which
gives an explicit description of the associated supercharacter table.

Theorem 3.1. Let S be the supercharacter table associated with the pair (K,X ). Then S = CR

where

CR = [c(xj, R/AnnR(xi))]1≤i,j≤m.

where

(3.1) c(xj, R/AnnR(xi)) =
φ(R/AnnR(xi))

φ(R/AnnR(xixj))
µ(R/AnnR(xixj)).

Proof. By definition we have

Sij = σi(Kj) = ∑
χ∈Xi

χ(xj) = ∑
x∈Ki

χx(xj) = ∑
x∈Ki

χxj(x)

=
|Ki|

φ(R) ∑
u∈R×

χxj(gxi) =
φ(R/AnnR(xi))

φ(R) ∑
u∈R×

χxjxi(u)

=
φ(R/AnnR(xi))

φ(R)
c(xixj, R) =

φ(R/AnnR(xi))

φ(R)
φ(R)

φ(R/Annxixj(R))
µ(R/Annxixj(R))

=
φ(R/AnnR(xi))

φ(R/AnnR(xixj))
µ(R/AnnR(xixj)).

□

By Theorem 3.2, we also have the following which generalizes [21, Theorem 1] and
[14, Proposition 2.4].

Theorem 3.2. Let R be a Frobenius ring. Then |det(CR)| = |det(S)| = |R|
τ(R)

2 .

We remark that while the definition of CR depends on the theory of Ramanujan sums,
the final formula does not. In other words, for a finite commutative ring, it makes
perfect sense to define CR as

CR =

[
φ(R/AnnR(xi))

φ(R/AnnR(xixj))
µ(R/AnnR(xixj))

]
1≤i,j≤m

.

Here {x1, . . . , xm} is a complete set of representatives for the cosets R×\R; namely, they
are a pairwise non-associates in R. We have the following proposition, which gives a
new criterion for a finite commutative ring to be Frobenius.

Theorem 3.3. det(CR) ̸= 0 if and only if R is a finite commutative ring.
12



Proof. We know that φ and µ are multiplicative with respect to direct product; namely
if R = R1 × R2 then

φ(R) = φ(R1)φ(R2), µ(R) = µ(R1)µ(R2).

Therefore, upto an ordering, CR = CR1 ⊗ CR2 . Consequently,

(3.2) det(CR) = det(CR1)
τ(R2) det(CR2)

τ(R1).

By the Artin-Wedderburn theorem, a finite commutative ring is Frobenius if and only
if it is a product of local finite commutative Frobenius ring. By Eq. (3.2), it is enough
to prove that this proposition is true for the case R is local. If R is Frobenius, then
Theorem 3.2 implies that det(CR) ̸= 0. Let us assume that R is not Frobenius. By [9,
Theorem 1], R have two distinct minimal ideals Re1 and Re2. The minimality condition
implies that AnnR(e1) = AnnR(e2) = m where m is the maximal ideal of R. We claim
that for each r ∈ R

φ(R/AnnR(r))
φ(R/AnnR(e1r))

µ(R/AnnR(e1r)) =
φ(R/AnnR(r))

φ(R/AnnR(e2r))
µ(R/AnnR(e2r)).

This will, of course, imply that CR is singular and hence det(CR) = 0. To prove this
fact, we consider two cases. If r ∈ m, then re1 = re2 = 0. Therefore, both numbers
are equal to φ(R/AnnR(r)). On the other hand, if r ∈ R \m = R×, then AnnR(e1r) =

AnnR(e2r) = m and therefore these numbers are both equal to − φ(R/AnnR(r))
φ(R/m)

.
□

Question 3.4. What can we say about the rank of CR?

4. KLUYVER’S FORMULA

In this section, we discuss an equivalent definition of Ramanujan sums, often called
the Kluyver formula in the literature. Various works have studied special cases of this
formula. For example, [24] investigates the case where R is a quotient of the polyno-
mial ring Fq[x], while [23] examines the case where R is a finite quotient of a Dedekind
domain. The fact that these finite rings are Frobenius is proved in [16, Theorem 3.8, The-
orem 3.9]. In this context, our theorem below provides a unified approach to Kluyver’s
formula.

Theorem 4.1. Let R be a Frobenius ring and g ∈ R. Then

c(g, R) = ∑
Rg⊂I

N(I)µ(R/AnnR(I)).

Here N(I) is the order of the quotient ring R/I.

Proof. We remark that both sides of the equations are multiplicative with respect to the
direct product. As a result, we only need to prove this statement when R is a local ring.

13



Since R is a local Frobenius ring, it has a unique minimal ideal namely I0 = Re for
some e ∈ R. Furthermore, AnnR(I0) = AnnR(e) = m where m is the maximal ideal of
R. We note that since R is Frobenius, it has an elegant duality property: for each ideal I
in R, AnnR(AnnR(I)) = I (see [9]). Let us consider the right hand side. By definition,
µ(R/AnnR(I)) = 0 unless AnnR(I) = R (when I = 0) or AnnR(I) = m (when I = Re).
We consider a few cases.

Case 1. g = 0. In this case, we have c(g, R) = φ(R). On the other hand, the right hand
side is equal to

|R| − |R/Re| = |R| − |R|
|Re| = |R| − |R|

|R/m| = |R| − |m| = φ(R) = c(g, R).

Case 2. g is associated with e; namely Rg = Re. In this case, by Eq. (2.10), c(g, R) =
− φ(R)

φ(R/m)
which is equal to −|m| by the short exact sequence

1 → 1 +m → R× → (R/m)× → 1.

On the hand, the only non-zero terms on the right side occur at I = Re. Therefore, the
right hand side is equal to to −|R/Re| = −|m|.

Case 3. g ̸= 0 and Rg ̸= Re. In this case, both sides are equal to 0. □
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Nguyên Duy Tân, On prime Cayley graphs, arXiv:2401.06062, to appear in Journal of Combinatorics
(2024).

6. Persi Diaconis and I Isaacs, Supercharacters and superclasses for algebra groups, Transactions of the Amer-
ican Mathematical Society 360 (2008), no. 5, 2359–2392.

7. Christopher F Fowler, Stephan Ramon Garcia, and Gizem Karaali, Ramanujan sums as supercharacters,
The Ramanujan Journal 35 (2014), 205–241.

14



8. Godfrey Harold Hardy, Ramanujan: Twelve lectures on subjects suggested by his life and work, vol. 136,
American Mathematical Soc., 1999.

9. Thomas Honold, Characterization of finite frobenius rings, Archiv der Mathematik 76 (2001), no. 6, 406–
415.

10. Dariush Kiani and Mohsen Molla Haji Aghaei, On the unitary Cayley graph of a ring, Electron. J. Comb.
(2012), P10–P10.

11. Walter Klotz and Torsten Sander, Some properties of unitary Cayley graphs, The Electronic Journal of
Combinatorics 14 (2007), no. 1, R45, 12 pages.

12. Erich Lamprecht, Allgemeine theorie der Gaußschen Summen in endlichen kommutativen Ringen, Mathe-
matische Nachrichten 9 (1953), no. 3, 149–196.
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