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ABSTRACT. Graphs defined over a finite ring are well-studied in the literature. Due to
their nature, these types of graphs connect several branches of mathematics, including
algebra, number theory, matrix theory, and representation theory. In a recent work, we
study U-unitary Cayley graphs over a finite commutative ring, which unifies several con-
structions of graphs with arithmetic origins. Among various structural graph-theoretic
results on these graphs—such as their connectedness, primeness, and bipartiteness—we
show that their spectra can be described via a certain supercharacter theory. Utilizing this
spectral description, we are able to find some classes of gcd-graphs that possess perfect
state transfer. In this article, we generalize this study to finite non-commutative rings,
with a special focus on the case of the matrix rings with coefficients in a finite field. We
show, in particular, that gcd-graphs over these matrix rings have no perfect state transfer.

1. INTRODUCTION

Let n be a positive integer and D a subset of proper divisors of n. The gcd-graph
Gn(D) is defined as follows:

(1) The vertices of Gn(D) are elements of the finite ring Z /n.
(2) Two vertices a, b are adjacent if gcd(a − b, n) ∈ D.

This type of graph was first introduced by Klotz and Sander in [18]. There, the authors
describe several fundamental graph-theoretic properties of these graphs. In particular,
they explain a beautiful connection between the spectra of these graphs and Ramanujan
sums. As a consequence of this spectral description, Klotz and Sander show that all
eigenvalues of gcd-graphs are integers. In [33], So proves the converse of this statement;
namely, if a Cayley graph over Z/n has all integral eigenvalues, then it must be a gcd-
graph. The works of Klotz, Sander, and So have led to a series of studies on Perfect
State Transfer (PST) on graphs—a concept introduced by physicists in quantum spin
networks (see [2, 3, 32, 35]).

In general, a gcd-graph can be defined over a finite commutative ring R using the
interplay between the additive and multiplicative structures of R (see [20, 24, 25, 35]).
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Many aspects of these gcd-graphs have been investigated, including but not limited to
their connectedness, primeness, and clique and independence numbers (see [1, 35, 24,
26]). Furthermore, when the underlying ring R is a finite commutative Frobenius ring,
we show in a previous work that the spectra of gcd-graphs over R can be described by
various arithmetical sums such as Gauss sums, Ramanujan sums, and Heilbronn sums
(see [28]).

The goal of this article is to define and study the concept of gcd-graphs over arbitrary
finite rings (and, more generally, U-unitary Cayley graphs over these rings). While
some former results over commutative rings generalize straightforwardly, others re-
quire more careful consideration, as left and right multiplication might not be the same
that leads to several new phenomenon such as two-sided ideal structures. In particular,
this necessitates a revisit of the notion of a gcd-graph in a non-commutative setting.

1.1. Outline. In Section 2, we introduce the notion of a U-unitary Cayley graph over a
finite ring R. We then describe some foundational graph-theoretic properties of these
graphs, including their connectedness and primeness. In particular, we provide a com-
plete answer regarding the connectedness and primeness of the unitary Cayley graph
associated with R under some mild conditions. Section 3 focuses on the spectra of these
U-unitary Cayley graphs when the underlying R is a symmetric Frobenius ring. We
show that these spectra can be described via certain supercharacter theory on R. As a
consequence of this spectral description, we provide an upper bound for the number
of distinct eigenvalues in a U-unitary Cayley graph. For certain graphs over a matrix
ring Mn(F), we also calculate this upper bound explicitly. In Section 3, we also study
the notation of relative Frobenius rings, which might be of independent interest. Fi-
nally, we utilize this spectral description to study the existence of Perfect State Transfer
(PST) on U-unitary Cayley graphs. We show, in particular, that PST cannot exist on any
gcd-graph over Mn(F).

2. U-UNITARY CAYLEY GRAPHS AND THEIR GRAPH THEORETIC PROPERTIES

2.1. U-unitary Cayley graphs. Let R be a finite ring and S a subset of (R,+) such that
S = −S and S does not contain 0. The Cayley graph Γ(R, S) is the undirected simple
graph whose vertex set is R, and two vertices a and b are adjacent if and only if a− b ∈ S.
In practice, S is often referred to as the connecting set of Γ(R, S). Furthermore, in many
applications, S often has an arithmetic origin (see [1, 14, 15, 17, 22, 31, 30, 34] for some
works in this line of research).

When R is commutative, we define in [28] the notion of a U-unitary Cayley graph,
where U is a subgroup of R×—the unit group of R. More precisely, a Cayley graph of
the form Γ(R, S) is called a U-unitary Cayley graph if S is stable under the action of U;
namely, US = S. As explained in [28], when U = R× and R = Z/n, this definition
coincides with the classical definition of a gcd-graph described in the introduction. We
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remark that, by its definition, U acts as an automorphism of each U-unitary Cayley
graph Γ(R, S) (see [28, Proposition 3.7]).

When R is not commutative, we must take into account the fact that left and right
multiplication might not be the same. Consequently, it seems reasonable to consider
them simultaneously. For this reason, we introduce the following definition.

Definition 2.1. Let R, S be as before. Let U be a subgroup of R× such that −1 ∈ U. We
say that Γ(R, S) is a U-unitary Cayley graph if S is stable under the left and right action
of U; namely, USU = S. Note that since −1 ∈ U, this condition automatically implies
that S is symmetric.

Remark 2.2. As explained in [23, Proposition 2.1], an element r ∈ R is left or right
invertible if and only if it is invertible. Therefore, there is no left/right ambiguity in the
definition of U and R×.

Remark 2.3. When U = R×, we will use the term R×-unitary Cayley graph and gcd-
graph interchangeably.

We define the following relation on R: we say that x ∼U y if x = u1yu2 where u1, u2 ∈
U. We can see that this is an equivalence relation. Furthermore, if we denote by Ix

(respectively Iy) the two-sided ideal generated by x (respectively y) then Ix = Iy. Here,
we recall that the two-sided ideal Ix is the set of elements of the forms ∑n

i=1 aixbi where
ai, bi ∈ R.

Let K = {K1, K2, . . . , Km} be the elements of the double quotient U\R/U. In other
words, K is precisely the equivalent classes of R with respect to ∼U . By the definition,
we have the following criterion for a graph to be U-unitary.

Proposition 2.4. The following conditions are equivalent.

(1) Γ(R, S) is a U-unitary graph.
(2) S is a disjoint union of some orbits Ki.

Corollary 2.5. If Γ(R, S) is a U-unitary Cayley graph, then its complement graph Γ(R, S)c is
also an unitary Cayley graph.

Proof. By definition, Γ(R, S)c is precisely Γ(R, S′) where S′ = R \ (S ∪ {0}) = K \ (S ∪
{0}). Since S and {0} are both unions of some orbits Ki’s, the same holds true for S′. □

2.2. Graph-theoretic properties of U-unitary Cayley graphs.

2.2.1. Connectedness. In this section, we answer the following question: when is a U-
unitary Cayley graph connected? To do so, we first introduce the following convention:
for each 1 ≤ i ≤ m, let Ii be the ideal generated by an element of x ∈ Ki (by definition
of Ki, Ii is independent of the choice of x). Let ℓ(Ki) be the smallest numbers such that
every element y in Ii be written in the form y = ∑

ℓ(Ki)
i=1 aixbi where ai, bi ∈ R. We note
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that since R is finite, such an a number always exists. Furthermore, if R is commutative,
then ℓ(Ki) is either 0 or 1. We now state the main result for the connectedness of a U-
unitary Cayley graph.

Proposition 2.6. Let Γ(R, S) be a U-unitary Cayley graph. Suppose that Γ(R, U) is connected.
Then the following conditions are equivalent.

(1) Γ(R, S) is connected.
(2) R = ∑i Ii where the sum is over all ideals Ii such that Ki ⊂ S.

Furthermore, if one of these conditions are satisfied, then

diam(Γ(R, S)) ≤ diam(Γ(R, U))2
t

∑
s=1

ℓ(Kis).

Here t is the smallest positive integer in which there exists i1, i2, . . . , it such that R = ∑t
s=1 Iis

and S ∩ Kis ̸= ∅.

Proof. The proof for this statement is a slight modification of the one given for the com-
mutative case in [28, Proposition 3.10]. We remark, however, that in this case the upper
bound for the diameter of Γ(R, S) is slightly larger due to the the non-commutativity of
R.

We first show that (1) =⇒ (2). Indeed, because Γ(R, S) is connected, we can find a
Z-linear combination: 1 = ∑i aisi, where ai ∈ Z and si ∈ S. By definition of Ii, we know
that ∑i aisi ∈ ∑i Ii. This shows that 1 ∈ ∑i Ii, which implies that R = ∑i Ii.

Conversely, suppose that (2) holds. We will show that Γ(R, S) is connected. In fact,
let r ∈ R. Since R = ∑t

s=1 Iis , we can write

(2.1) r =
t

∑
s=1

ℓ(Kis )

∑
j=1

ais jxis bis j

 ,

where xis ∈ Kis , ns ∈ N, and ais j, bis j ∈ R. Furthermore, since Γ(R, U) is connected,
each ais j and bis j can be written as a sum of at most diam(Γ(R, U)) elements in U.
Consequently, each term ais jxis bis j can be written as a Z-linear combinations of at most
diam(Γ(R, U))2 elements in Kis . From Eq. (2.1), we conclude that

diam(Γ(R, S)) ≤ diam(Γ(R, U))2
t

∑
s=1

ℓ(Kis).

□

Corollary 2.7. Let R = Mn(F) where n > 1 and F is a finite field. Let U ⊂ R× = GLn(F)
such that Γ(R, U) is connected. Let Γ(R, S) be a U-unitary Cayley graph such that S is not an
empty set. Then Γ(R, S) is connected.

Proof. This follows from Proposition 2.6 and the fact that the only two-sided ideals of
Mn(F) are 0 and Mn(F). □
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Remark 2.8. By [19], every square matrix of size n × n with n > 1 is the sum of two
invertible matrices. Therefore, the graph Γ(Mn(F), GLn(F)) is always connected. The
above corollary shows that all non-empty GLn(F)-unitary Cayley graphs are connected.

It turns out that every non-empty SLn(F)-graph is connected.

Proposition 2.9. The Cayley graph Γ(Mn(F), SLn(F)) is connected.

Remark 2.10. We remark that since we only work with undirected graph, we assume
implicitly here that −In ∈ SLn(F). This happens only if char(F) = 2 or n is even.

Proof. By the proof of Proposition 3.10, for two singular matrices A, B, A ∼GLn(F) B if
and only if A ∼SLn(F) B. Furthermore, since every matrix is a sum of matrices with
exactly one non-zero element, it is sufficient to show that for each a ∈ F, the following
can be written as a sum of elements in SLn(F)

A = a ⊕ 0n−1 =

[
a 0
0 0

]
.

In fact, let X and Y be as follow

X =

[
1 + a 1
−1 0

]
, X′ = X ⊕ In−2,

Y =

[
1 1
−1 0

]
, X′ = Y′ ⊕ In−2,

Then A = X′ + (−Y′) and det(X′) = det(−Y′) = 1. We remark that we implicitly use
the assumption that det(−In) = 1. □

2.2.2. Primeness. In this section, we study the primeness of a U-unitary Cayley graphs.
First, we need to recall this definition.

A subset X in a graph G is called a homogeneous set if every vertex in V(G) \ X is
adjacent to either all or none of the vertices in X. By definition, if X = V(G) or |X| = 1
then X is a homogeneous set– it is called a trivial homogeneous set. Otherwise, a ho-
mogeneous set X with 2 ≤ X < |V(G)| is called non-trivial. The graph G is said to be
prime if it does not contain any non-trivial homogeneous sets. We note that, by defini-
tion, a set X is homogeneous in G if and only if X is homogeneous in the complement
Gc of G. Additionally, we also note that the notion of a homogeneous set generalizes the
notion of a connected component; namely, a connected component of a graph is always
a homogeneous set. For this reason, when studying prime graphs, we can safely assume
that Γ(R, S) and its complement are both connected.

As explained in previous works such as [9, 25, 28], the existence of a a homogeneous
set on a Cayley graph requires some rather strong conditions on the generating set. In
particular, in [28], we show that if a U-unitary Cayley graph over a commutative ring is
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not prime, then there exists a proper ideal I ; namely I ̸= 0 and I ̸= R, such that I is a
homogeneous set. This statement can be generalized to the non-commutative setting.

Proposition 2.11. Suppose that Γ(R, U) is connected. Suppose further that Γ(R, S) is both
connected and anti-connected. Then, the following conditions are equivalent.

(1) Γ(R, S) is not a prime graph.
(2) There exists a proper two-sided ideal I in R such that I is a homogeneous set in Γ(R, S).

Proof. By definition, (2) =⇒ (1). Let us show that (1) =⇒ (2). By [9, Theorem 3.4], if I
is a maximal non-trivial homogeneous set of Γ(R, S) containing 0, then I is a subgroup of
(R,+). We claim that I is a left ideal in R as well. For each u ∈ U, the left multiplication
by u is an automorphism of Γ(R, S). Consequently, uI is also a homogeneous set. Since
0 ∈ I ∩ uI I ∪ uI is also a homogeneous set (see [9, Lemma 3.1]). By the maximality
of I, we must have uI = I. We conclude that I is stable under the left action of U. We
now show that if r ∈ R, then rI ⊂ I. In fact, since Γ(R, U) is connected, we can write
r = ∑d

i=1 miui, where mi ∈ Z and ui ∈ U. For each h ∈ I, we have rh = ∑d
i=1 mi(uih).

Since uih ∈ I and I is a subgroup of (R,+), we conclude that rh ∈ I. This shows that
rI ⊂ I for all r ∈ R. Therefore, I is a left ideal in R. An identical argument show that I
is also a right ideal in R. We conclude that I is a two-sided ideal in R. □

Let us discuss some corollaries of Proposition 2.11.

Corollary 2.12. Let R = Mn(F) with n > 2 and F is a finite field. Let U ⊂ R× = GLn(F)
such that Γ(R, U) is connected. Let Γ(R, S) be a U-unitary Cayley graph such that S ̸= ∅ and
S ̸= Mn(F) \ {0} (equivalently Γ(R, S) is not a complete or empty graph). Then Γ(R, S) is
prime. In particular, if U = GLn(F) or U = SLn(F), then Γ(R, S) is always prime.

Proof. By Corollary 2.7, we know that Γ(R, S) is both connected an anti connected. Fur-
thermore, Mn(F) has no proper two-sided ideals. Therefore, Proposition 2.11 shows
that Γ(R, S) is prime. □

In the case S = U, we have the a rather strict condition when Γ(R, U) is not prime. To
discuss this restriction, we recall that the Jacobson radical Rad(R) of R is the intersection
of all left maximal ideals in R (see [29, Chapter 4.3]). It is known that Rad(R) is a two-
sided ideal in R.

Proposition 2.13. Let I be a left (or right) ideal which is also a homogeneous set in Γ(R, U).
Then I + U ⊂ U. Furthermore, I ⊂ Rad(R).

Proof. Since U ⊂ R×, U ∩ I = ∅. We know that (1, 0) is an edge in Γ(R, U). Since 0 ∈ I
and I is homogeneous, (1,−x) is also an edge for each x ∈ I. By definition, this shows
that 1 + x ∈ U. Let u ∈ U and x ∈ I, we have u + x = u(1 + u−1x). We know that
1 + u−1x ∈ U and u ∈ U. Hence, u + x ∈ U. The fact that I ⊂ Rad(R) follows from [29,
Chapter 4.3]). □
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We have the following immediate corollary.

Corollary 2.14. If R is semisimple; namely Rad(R) = 0, then there is no two-sided ideal I such
that I is homogeneous in Γ(R, U). In particular, if Γ(R, U) is connected and anti-connected,
then Γ(R, U) is prime.

2.2.3. Unitary Cayley graphs. In this section, we focus on the case S = R×. In this case,
the associated graph is denoted by GR and is well-known as the unitary Cayley graph
of R (see [1, 6]). This type of graph has a rich history; we can trace its root in the work
of Evans and Erdős in [10]. In [9, 23, 25], we provide a complete classification of finite
commutative ring R such that GR is connected/prime. In this section, we give a similar
answer for all finite ring R.

We note that, by [9, Proposition 4.30], Rad(R) is a homogeneous set in GR. By the
same argument as in [9, Corollary 4.2], we have the following isomorphism

GR
∼= GRss ∗ En,

here Rss = R/Rad(R) is the simplification of R, En is the empty graph on n = |Rad(R)|
vertices, and ∗ denotes the wreath product of two graphs (see [9, Definition 2.5] for
the definition of the wreath product of graphs). This isomorphism shows that GR is
connected if and only if GRss is connected. Furthermore, if GR is prime then Rad(R) = 0;
namely R = Rss. Therefore, we can assume from now on that R = Rss. In this case, the
Artin-Wedderburn theorem implies that Rss is a product of local semisimple rings

(2.2) Rss =
s

∏
i=1

Ri ×
r

∏
i=1

Mdi(Fi).

Here Ri is a finite field such that 2 ≤ |R1| ≤ |R2| ≤ · · · ≤ |Rs|. Additionally, di ≥ 2, and
Fi is a finite field. We can then see that GRss is a direct product of unitary Cayley graphs

GRss =
s

∏
i=1

GRi ×
r

∏
i=1

GMdi
(Fi)

=
s

∏
i=1

K|Ri| ×
r

∏
i=1

GMdi
(Fi)

.

We have the following proposition, which is a direct generalization of [9, Lemma 4.33]
and [25, Theorem 3.6].

Proposition 2.15. GRss (and hence equivalently GR) is connected if and only if in the above
decomposition, there is at most one i ∈ {1, . . . , s} such that |Ri| = 2.

Proof. If there is more than two i such that |Ri| = 2 then the direct product contains a
copy of K2 × K2 which is not connected. Therefore, GRss is also not connected. Con-
versely, suppose that there is at most one i such that |Ri| = 2. By our ordering, |R1| = 2
and |Rk| > 2 for each 2 ≤ k ≤ s. For these k, each graph GRk is connected and non-
bipartite. Similarly, for 1 ≤ i ≤ r, GMdi

(Fi)
is also connected and non-bipartite (see [23,

Proposition 3.5]). By [12, Corollary 5.10], GRss is connected. □
7



We now classify R such that GR is prime. As explained above, if GR is prime, then
R is necessarily semisimple; namely R = Rss. Additionally, GR must also be connected
and anti-connected. By Proposition 2.15 if GRss is connected, there is at most one i such
that |Ri| = 2 in the Artin-Wedderburn decomposition of R. For anti-connected, we have
the following simple observation.

Proposition 2.16. GRss is not anti-connected if and only if Rss is a field.

Proof. If Rss is a field then GRss is a complete graph. Therefore, its complement is not
connected. Conversely, assume that Rss is not a field. There are two cases to consider.

Case 1. Rss is a product of two rings; say R = R1 × R2. We claim that for each (r1, r2) ∈
R1 × R2, there is a walk in Gc

Rss between (0, 0) and (r1, r2) (by a translation, this shows
that there is a walk between any two vertices in GRss . If r1, r2 is not a unit then (0, 0)
and (r1, r2) are adjacent in Gc

Rss . Now, suppose that r1, r2 are both units. Then have the
following walk

(0, 0) → (r1, 0) → (r1, r2).

Case 2. Rss = Mn(F) for some n > 1 and F is a field. Let A = [v1 v2 . . . vn]

be a matrix formed by column vectors {v1, v2, . . . , vn}. We claim that there is a walk
between 0 and A. In fact, let A1 = [v1 v2 . . . vn−1 0]. Then both A1 and A − A1 are
not invertible. Consequently, we have the following walk in Gc

Rss

0 → A1 → A.

Since this true for all A, we conclude that Gc
Rss is connected. □

We are now ready to state and prove the main theorem about the primeness of GRss .

Proposition 2.17. GR is prime if and only if the following conditions are satisfied

(1) R = Rss.
(2) Let

Rss =
s

∏
i=1

Ri ×
r

∏
i=1

Mdi(Fi),

be the decomposition of Rss into products of fields and matrix rings as in Eq. (2.2). Then
there is at most one 1 ≤ i ≤ s such that |Ri| = 2.

(3) Rss is not a field (Rss is a field if and only if s = 1 and t = 0).

Proof. We have shown that these conditions are necessary in Proposition 2.15 and Propo-
sition 2.16. Let us show that they are sufficient. Condition (1) implies that GR = GRss .
Additionally, condition (2) and (3) imply that GR is both connected an anti-connected.
By Corollary 2.14 and Proposition 2.15, we conclude that GR is a prime graph. □
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2.2.4. Primeness and singularity of the adjacency matrix. In [28, Section 4.3], we study a
quite interesting relationship between the primeness of a U-unitary graph and the sin-
gularity of its adjacency matrix. More precisely, we show that if R is commutative and
U ⊂ R× such that Γ(R, U) is connected, anti-connected, and not prime, then the adja-
cency matrix of Γ(R, U) is singular. Equivalently, 0 is an eigenvalue of Γ(R, U)(see [28,
Proposition 4.16]). This statement holds for any finite ring R. In fact, if Γ(R, U) has
these properties, then by Proposition 2.11 there exists a two-sided ideal I such that I is
a homogeneous set in Γ(R, U). Furthermore, since I ∩ U = ∅, Γ(R, U) is isomorphic to
the wreath product Γ(R/I, U) ∗ E|I|. By [21, Theorem 3.3], 0 is an eigenvalue of Γ(R, S).

We are interested in the converse of this statement.

Question 2.18. If Γ(R, U) is prime, is it true that 0 is not an eigenvalue of Γ(R, U)?

Here, we provide a partial answer to this question for the case of unitary Cayley
graphs.

Proposition 2.19. Suppose that GR is prime. Then 0 is not an eigenvalue of GR.

Proof. By Proposition 2.17, if GR is prime then R is semisimple; namely

R =
s

∏
i=1

Ri ×
r

∏
i=1

Mdi(Fi),

where Ri, Fi are fields and di ≥ 2. Therefore

GR
∼=

s

∏
i=1

K|Ri| ×
r

∏
i=1

GMdi
(Fi)

.

Here, all products are the direct product. An eigenvalue of GR is therefore of the form

∏s
i=1 λi ∏r

i=1 λ′
i where λi is an eigenvalue of K|Gi| and λ′

i is an eigenvalue of GMdi
(Fi)

.
Since K|Gi| is a complete graph, λi ̸= 0. Similarly, by [6, Theorem 1.1], λ′

i ̸= 0 as well.
Therefore, all eigenvalues of GR are not 0. □

3. SPECTRA THEORY OF U-UNITARY CAYLEY GRAPHS

OVER A FINITE SYMMETRIC FROBENIUS ALGEBRA

3.1. Symmetric Frobenius algebras. Let R be a S-algebra; namely, there is a ring ho-
momorphism f : S → R such that f (S) is contained in the center of R. To avoid lengthy
notations, we will often identify S and its image f (S) in S.

Definition 3.1. We say that R is a symmetric Frobenius S-algebra if there exists a S-
module morphism ψR,S : R → S satisfying the following conditions

(1) ψR,S(r1r2) = ψR,S(r2r1).
(2) The kernel of ψR,S does not contain any non-zero left ideal in R.

Proposition 3.2. Suppose that R is a symmetric Frobenius S-algebra, and S is a symmetric
Frobenius T-algebra. Then R is a symmetric Frobenius T-algebra.
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Proof. Let ψR,S : R → S (respectively ψS,T : S → T) be the morphism that makes R
(respectively S) a symmetric Frobebenius S-algebra (respectively T-algebra). Let ψR,T

be the composition of ψS,T ◦ ψR,S. By definition ψR,T : R → T is T-linear and symmetric.
We claim that its kernel does not contain any non-trivial left ideal in R. In fact, suppose
to the contrary it is not the case. Then, there exists x ∈ R such that ψR,T(rx) = 0 for all
r ∈ R. For each s ∈ S, sr ∈ R and hence ψR,T(srx) = 0. By definition

0 = ψR,T(srx) = ψS,T(ψR,S(srx)) = ψS,T(sψR,S(rx)).

Since ψS,T does not contain a non-trivial left ideal, we conclude that ψR,S(rx) = 0. Since
this is true for all r ∈ R, ker(ψR,S) contains the left ideal generated by x–which is a
contradiction. □

Proposition 3.3. Let R be a finite commutative ring and n a positive integer. Then Mn(R) is a
symmetric Frobenius R-algebra under the trace map.

Proof. Let T : Mn(R) → R be the trace map. It is known that T is symmetric; namely
T(AB) = T(BA) for all A, B ∈ Mn(R). We now show that T is non-degenerate. In fact,
suppose to the contrary that ker(T) contains a left ideal in Mn(R). Then, there exists a
non-zero matrix A ∈ Mn(R) such that T(BA) = 0 for all B ∈ Mn(R). Let Eij be the
matrix whose (i, j)-position is 1 and 0 everywhere else. We have

0 = T(Eij A) = Aji.

Since this is true for all 1 ≤ i, j ≤ n, we must have A = 0, which is a contradiction. □

We have the following corollary.

Corollary 3.4. Let S, R be commutative rings such that R is a Frobenius S-algebra. Then
Mn(R) is also a Frobenius S-algebra. In particular, if Fq is a finite field whose base field is Fp,
then Mn(F) is a symmetric Frobenius Fp-algebra.

Proof. The first part follows from Proposition 3.2 and Proposition 3.3. The second part
follows from the first part and the fact that F is a symmetric Frobenius Fp-algebra under
the classical trace map Tr : Fq → Fp . □

3.2. Spectral description of U-unitary Cayley graphs. Suppose that R is a symmetric
Frobenius Z /n-algebra for some n > 1. Let ψ be the associated Z /n-linear functional
ψ : R → Z /n. Let ζn be a fixed primtive root of unity in C. Let χ : R → C be the
character defined by χ(s) = ζ

ψ(s)
n . For each r ∈ R, let χr be the character defined by

χr(s) = χ(rs). The map

Φ : R → Hom(R, C×),

sending r 7→ χr is group homomorphism (with respect to the additive structure on R).
Since ψ is non-degenerate, Φ is injective. However, since R is finite, it is an isomorphism
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as well. In other words, χ is a generating character for the dual group Hom(R, C×) (see
[13]). We remark that since ψ is symmetric, for each r, s ∈ R, χr(s) = χs(r).

By the circulant diagonalization theorem (see [16]), we know that the eigenvalues of
the Cayley graph Γ(R, S) are given by the multiset {λr}r∈R where

λr = ∑
s∈S

χr(s).

Next, we will show that when Γ(R, S) is U-unitary, there is a quite elegant description
of the above sum by certain supercharacter theory on R. To do so, we first need to recall
the definition of a supercharacter theory.

Definition 3.5. (see [28, Definition 2.1]) Let G be a finite abelian group. Let K =

{K1, K2, . . . , Km} be a partition of G and X = {X1, X2, . . . , Xm} a partition of the dual
group Ĝ = Hom(G, C×) of characters of G. We say that (K,X ) is a supercharacter
theory for G if the following conditions are satisfied

(1) {0} ∈ K;
(2) |X | = |K|;
(3) For each Xi ∈ X , the character sum

σi = ∑
χ∈Xi

χ

is constant on each K ∈ K;
(4) For a fixed χ ∈ X the sum ∑k∈Ki

χ(k) does not depend on the choice of χ ∈ X.

We now show that each U induces a supercharacter theory on R (this generalizes [28,
Theorem 4.1] for the case R is commutative). More precisely

Proposition 3.6. let K = {K1, K2, . . . , Km} be the double quotient U\R/U. Additionally, let
X = {X1, X2, . . . , Xm} be the partition of the character group of R defined by

Xi = {χx | x ∈ Ki}.

Then the pair (K,X ) is a symmetric supercharacter theory for R. Furthermore, (K,X ) satisfies
Condition 4 in Definition 3.5.

Proof. The first two conditions are clear from the definition of K and X . Let us prove the
third condition. Let

σi = ∑
x∈Ki

σx.

Suppose that y ∼U z, we will show that σi(y) = σi(z). In fact, by definition, y = u1zu2

for some u1, u2 ∈ U. We then have

σi(y) = ∑
x∈Ki

σx(y) = ∑
x∈Ki

σx(u1zu2) = ∑
x∈Ki

χ(xu1zu2)

= ∑
x∈Ki

χ(u2xu1z) = ∑
t∈u1Kiu2

χ(tz) = ∑
t∈u1Kiu2

χt(z) = ∑
x∈Ki

χx(z) = σi(z).

11



Here, the third equality follows from the fact that χ(rs) = χ(sr). The last equality
follows from the fact that u1Kiu2 = Ki. We conclude that the pair (K,X ) satifies the third
condition of Definition 3.5. Finally, the last condition of Definition 3.5 can be obtained
by an almost identical argument as above. □

For each 1 ≤ i, j ≤ n we define, as in [28], the following notation

Ωji = ∑
y∈Kj

χxi(k),

Here xi ∈ Ki (by Proposition 3.6, Ωji does not depend on the choice of xi.).

Theorem 3.7. Let Γ(G, S) be an U-unitary Cayley graph. Then, the spectrum of Γ(G, S) is the
multiset {[λi]|Ki|}1≤i≤m where

λi = ∑
Kj⊂S

Ωji.

Consequently, Γ(G, S) has at most m distinct eigenvalues where m = |U\R/U|.

Proof. For each r ∈ R, let λr be the eigenvalue associated with r under the circulant
diagonalization theorem. We then have

λxi = ∑
s∈S

χxi(s) = ∑
Kj⊂S

 ∑
kinKj

χxi(k)

 = ∑
Kj⊂S

Ωji.

We also know that if xi ∼U x′i, then λxi = λx′i
. Therefore, each λxi occurs |Ki|-times. □

3.3. The case of matrix rings. In this section, we apply Theorem 3.7 to some U-unitary
Cayley graphs over a matrix ring. We will show, in particular, that the upper bound in
Theorem 3.7 can be strict in several cases. First, we study the case of gcd-graphs over
Mn(F).

Corollary 3.8. Let R = Mn(F) where F is a finite field. Let Γ(R, S) be a R×-unitary Cayley
graph. Then Γ(R, S) has at most (n + 1) distinct eigenvalues.

Proof. By Corollary 3.4, we know that Mn(F) is a symmetric Frobenius Fp-algebra where
Fp is the base field of F. By the theory of row and columns operations, for two matrices
A and B, A ∼GLn(F) B if and only if rank(A) = rank(B). Therefore, |Gln(F)\Mn(F)/
GLn(F)| has exactly n + 1 equivalence classes. Therefore, by Theorem 3.7, Γ(R, S) has
at most n + 1 distinct eigenvalues. □

Remark 3.9. The upper bound in Corollary 3.8 is strict. In fact, in [6, Theorem 1.1], the
authors show that the unitary Cayley graph on Mn(F) has exactly n + 1 distinct eigen-
values. It would be interesting to see whether their calculations could be generalized to
all R×-unitary Cayley graphs over Mn(F).

We now discuss another result which shows the power of Corollary 3.8. Let R =

GLn(F) and U = SLn(F)–the set of all invertible matrices with determinant 1.
12



Proposition 3.10. |SLn(F)\Mn(F)/SLn(F)| = n + |F| − 1.

Proof. For A, B ∈ Mn(F) such that A ∼SLn(F) B, then det(A) = det(B). Therefore, if A, B
are invertible and det(A) ̸= det(B), then A and B are not equivalent. This shows that

|SLn(F)\GLn(F)/SLn(F)| = |F|× = |F| − 1.

On the other hand, we claim that if A ∼GLn(F) B and A, B are not invertible, then
A ∼SLn(F) B. Let r = rank(A) = rank(B). Then r < n. Let Ir be the identity matrix of
size r × r and Îr be the following matrix

Îr = Ir ⊕ 0 =

[
Ir 0
0 0

]
.

By row and column operations, we know that there exists P, Q ∈ GLn(F) such that
A = PÎrQ. Let P′ (respectively Q′) be the new matrix obtained by multiplying the last

column of P (respectively Q) by
1

det(P)
(respectively

1
det(Q)

). Then, we still have

A = PÎrQ = P′ ÎrQ′.

Furthermore, det(P′) = det(Q′) = 1. Therefore, A ∼SLn(F) Îr. Similarly, B ∼SLn(F)

Îr, and hence A ∼SLn(F) B. This shows that the rank map gives an isomorphism be-
tween SLn(F)\[Mn(F) − GLn(F)]/SLn(F) and the set {0, 1, . . . , n}. In summary, we
have |SLn(F)\Mn(F)/SLn(F)| = n + |F| − 1.

□

Corollary 3.11. Let Γ(Mn(F), S) be an SLn(F)-unitary Cayley graph. Then Γ(Mn(F), S) has
at most n + |F| − 1 distinct eigenvalues.

Remark 3.12. We remark that the upper bound in Corollary 3.11 is also strict in various
cases. For example, for n = 2, Fp, R = M2(Fp) and U = SL2(Fp) with p ∈ {5, 7}, the
number of distinct eigenvalues in Γ(R, U) is exactly p + 1 = n + |Fp| − 1. However, this
upper bound is not strict for p = 2, 3.

Let us now study on U-unitary Cayley graphs over the matrix ring Mn(R) where R is
a local ring. In general, the theory of matrix ring over R is quite complicated. However,
when R is a principal local ideal ring (PIR), there is a quite elegant theory that classifies
equivalent classes of matrices over Mn(R). First, we remark that a finite local PIR is
necessarily a Frobenius ring (see [13]). By Proposition 3.3, Mn(R) is also a symmetric
Frobenius ring. As a result, Theorem 3.7 applies to all U-unitary Cayley graphs over
Mn(R). To describe the double coset GLn(R)\Mn(R)/Mn(R), we first discuss some
terminology and notation. Let π be the uniformizer for the maximal ideal of R. Then,
there exists a positive integer m such that πm−1 ̸= 0 but πm = 0. Furthermore, every
elements in R can be written in the form uπa where u ∈ R× and 0 ≤ a ≤ m.
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Proposition 3.13. ([4, Theorem 15.24]]) Let R be a local PIR with π as a uniformizer. Then
every A ∈ Mn(R) is GLn(R)-equivalent to a unique diagonal matrix D of the form

D = diag(pa1 , . . . , pan),

where 0 ≤ a1 ≤ a2 . . . ≤ an ≤ m (D is called the Smith normal form of A). Consequently, the
number of classes in GLn(R)/Mn(R)\GLn(R) is precisely (m+n

n ).

Corollary 3.14. Let R be a local PIR and Γ(Mn(R), S) be a gcd-graph over Mn(R). Then
Γ(R, S) has at most (m+n

n ) disctint eigenvalues.

Remark 3.15. The upper bound in Corollary 3.14 could be strict. For example, let n = 2
and R = Z /4 (so m = 2 in this case). Let S be set of all A ∈ Mn(R) such that or A is
GLn(R)-equivalent to one of the following matrices

X1 =

[
1 0
0 0

]
, X2 =

[
2 0
0 0

]
.

Then, the gcd-graph Γ(R, S) has the following characteritic polynomial

(x − 81)(x + 15)6(x − 17)9(x − 9)72(x + 7)72(x + 3)96.

It has exactly 6 = (m+n
m ) = (4

2) distinct eigenvalues.

4. PERFECT STATE TRANSFER ON U-UNITARY CAYLEY GRAPHS

Let G be an undirected simple graph with adjacency matrix AG. Let F(t) be the
continuous-time quantum walk associated with G; namely, F(t) = exp(iAGt). We say
that there is perfect state transfer (PST) in graph G if there are distinct vertices a and b
and a positive real number t such that |F(t)ab| = 1. The concept of PST was introduced
in [8] in the context of quantum spin networks. Since this pioneering work, there has
been a series of articles studying this phenomenon on arithmetic graphs (see [2, 7, 11, 32]
for some works in this line of research). One of the main reasons is that a regular graph
that has PST must be necessarily integral; namely, all of its eigenvalues are integers
(see [11, 32]). Furthermore, we show in [27, Theorem 3.5] that if PST exists, it will only
happen at vertices with some strict local conditions.

In [27], we study PST on U-unitary Cayley graphs defined over a finite commutative
ring. There, we describe the necessary and sufficient conditions for a U-unitary Cayley
graph to have PST (see [27, Theorem 2.2]). In this section, we generalize these results
to the non-commutative setting. In particular, we will show that there is no PST on gcd
Cayley graphs over Mn(F) where n > 1 and F is a finite field.

First, we show that [27, Theorem 2.2] generalizes without much modification to the
non-commutative setting (since the argument mostly uses the additive structure of R).
Let R be a symmetric Frobenius Z/n-algebra. Let ψ : R → Z/n be the non-degenerate
functional of R, and let χ be the associated generating character of Hom(R, C×). Let
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G = Γ(R, S) be a generic Cayley graph over R. The adjacency matrix AG is an R-circulant
matrix (see [16, 5]). For such r ∈ R, let

v⃗r =
1√
|R|

[χr(s)]Ts∈R ∈ C|R|.

By the circulant diagonalization theorem (see [16]), the set {v⃗r : r ∈ R} forms a nor-
malized orthonormal eigenbasis for all AG. Furthermore, the eigenvalues of AG are
precisely the multiset {λr}r∈R where λr = ∑s∈S χr(s). Let V = [⃗vr]r∈R ∈ C|R|×|R| be the
matrix formed by this eigenbasis and V∗ be the conjugate transpose of V. Then we can
write

AG = VDV∗ = ∑
r∈R

λrv⃗rv⃗∗r ,

here D = diag([λr]r∈R) is the diagonal matrix formed by the eigenvalues λr. We then
have

F(t) = ∑
r∈R

eiλrtv⃗rv⃗∗r .

Hence

F(t)s1,s2 =
1
|R| ∑

r∈R
eiλrtχr(s1 − s2) =

1
|R| ∑

r∈R
eiλrtζ

ψ(r(s1−s2))
n =

1
|R| ∑

r∈R
e2πi

(
λr

t
2π+

ψ(r(s1−s2))
n

)
.

By the triangle inequality, |F(t)s1,s2 | = 1 if and only if λr
t

2π + ψ(r(s1−s2))
n are constant

modulo 1. Furthermore, by symmetry, there exists perfect state transfer between s1 and
s2 if and only if there exists perfect state transfer between 0 and s2 − s1. We then have the
following criterion, which is a direct generalization of [2, Theorem 4] and [27, Theorem
2.2].

Theorem 4.1. There exists perfect state transfer from 0 to s at time t if and only if for all
r1, r2 ∈ R

(λr1 − λr2)
t

2π
+

ψ((r1 − r2)s)
n

≡ 0 (mod 1).

We will now apply Theorem 4.1 to some classes of U-unitary Cayley graphs. First,
we discuss some necessary conditions. Let Γ(R, S) be a U-unitary Cayley graph that
has PST. Let ∆ := ∆S be the abelian group generated by r1 − r2, where r1 and r2 are
elements of R such that λr1 = λr2 . By Theorem 4.1, we must have ψ(ds) = 0 for all
d ∈ ∆. In particular, if ∆ = R, then by the non-degeneracy of ψ, s must be 0, and hence
PST cannot exist on Γ(R, S). This is the case when R = Mn(F).

Proposition 4.2. Let R = Mn(F) where n > 1 and F is a finite field. Let U = R× = GLn(F).
Suppose that Γ(R, S) is a U-unitary Cayley graph. Then, there is no PST on Γ(R, S).

Proof. By Theorem 3.7, if u1, u2 ∈ GLn(F), then λu1 = λu2 . Consequently, u1 − u2 ∈ ∆.
Furthermore, by [19], every matrix in Mn(F) is the difference of two invertible matrices.
Therefore, ∆ = Mn(F). This shows that there is no PST on Γ(R, S). □
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Remark 4.3. The same argument works for a ring of the form Mn(S) where S is a finite
Frobenius local commutative ring. In fact, let F be the residue of R. Then, there is a
natural ring homomorphism Mn(S) → Mn(F). Under this map, a matrix A ∈ Mn(S) is
invertible if and only if its image Ā ∈ Mn(F) is also invertible. As a result, every matrix
in Mn(R) is also a sum of two invertible matrices.

We now show that the same statement holds if we take U = SLn(F).

Proposition 4.4. Let R = Mn(F) where n > 1 and F is a finite field. Let U = SLn(F).
Suppose that Γ(R, S) is a U-unitary Cayley graph. Then, there is no PST on Γ(R, S).

Proof. Let V1 be the set of rank 1 matrices in Mn(F). By the proof of Proposition 3.10,
for A, B ∈ V1, A ∼SLn(F) B. As a result, λA = λB. Let ∆′ be the abelian group generated
by (A − B) where A, B ∈ V1. Then, ∆′ ⊂ ∆. We claim that ∆′ = Mn(F). In fact, for
v ∈ Fn, we can write v = v1 − v2 where v1, v2 ̸= 0. Therefore, if X is a matrix with
exactly one non-zero column vector, then X ∈ ∆′. Since every matrix is a sum of those
X’s, we conclude that ∆′ = Mn(F). Consequently, ∆ = Mn(F) and hence Γ(R, S) has no
PST. □

Remark 4.5. By Proposition 4.2 and Proposition 4.4, PST cannot exist on U-unitary
graphs with U = GLn(F) or U = SLn(F). However, PST can exist if U is a smaller
subgroup of GLn(F). For example, let us consider the case R = M2(F2) and U is the
subgroup of permutation matrices in R; namely

U =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
Then Γ(R, U) is a dijoint union of four copies of C4 where C4 is the cycle graph on 4
vertices. It is known that there is PST on C4 (see [2, Lemma 9].) It would be interesting
to classify all pairs (Mn(F), U) such that there exists a U-unitary graph that has PST.
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We thank Ján Mináč for his interest in this project and for asking some interesting
questions about the upper bound in Theorem 3.7.

REFERENCES

1. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel, and D. Pritikin, On
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