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Abstract. Motivated by studies of oscillator networks, we study the spectrum of the join of

several normal matrices with constant row sums. We apply our results to compute the char-
acteristic polynomial of the join of several regular graphs. We then use this theorem to study

several problems in spectral graph theory. In particular, we provide some simple constructions

of Ramanujan graphs and give new proofs for some theorems in the classical book of Cvetković,
Rowlinson, and Slobodan.

1. Introduction

Networks of nonlinear oscillators have attracted interest in several scientific domains such as
theoretical physics, mathematical biology, power-grid systems, and many more. In our investigation
of oscillator networks (see [1, 15, 18]), the networks of several communities joined together often
appear and provide some interesting phenomena (see for example [18, Proposition 23] and [15,
Proposition 12]). The key idea of these investigations of multi-layer networks is to reduce the
study of dynamics on complex networks to simpler networks. In both theory and practice, the
adjacency matrix of the original multi-layer network may appear quite complicated. However,
using the techniques that we develop here for join graphs, we will see that we can attach to each
multi-layer network a reduced matrix which usually has a much smaller size than the original
adjacency matrix. Nevertheless, as we show in [16], by considering this reduced matrix, we can
obtain good information about the entire complex network. In [18], we study the case where
the connection within a community follows a simple rule, namely, each community is a circulant
network. In this case, the main theorem in [18], which generalizes the Circulant Diagonalization
Theorem (CDT), explicitly describes the spectrum of the joined network. In this article, we
generalize this theorem to the case where each community forms a regular graph. This relaxation
will allow us to investigate a broader class of networks. In particular, we are able to apply our
generalized theorems to study several interesting problems in spectral graph theory.

We remark that since the completion of this article, we have utilized this circle of ideas to
study some broadcasting and combining mechanisms on multi-layer networks of oscillators (see
[11, 16].) We want to emphasize that the broadcasted solution described Eq. (3.1) has a nice
physical interpretation(see [16]). Furthermore, we also extend this line of research further by
investigating the question of whether a given graph can be written as a joined union of smaller
graphs with a special focus on the case where the graph is highly symmetric (see [4, 17]).

1.1. Outline. The structure of this article is as follows. In Section 2, we study some basic spectral
properties of normal matrices with constant row sums. In Section 3, we define the joins of these
matrices and study their spectral properties. We then apply the main results from this section to
give new proofs of several results in [6] for the join of regular graphs. In this way, we provide a new
conceptual insight for these statements based on key results in Section 3. Section 4.2 explains a
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simple method to construct Ramanujan graphs using the join construction. We remark here that
the construction of Ramanujan graphs is of great interest in network, communication, coding, and
number theories. We then discuss the joined union of graphs in Section 4.3. In Section 4.4, we
apply the results from the previous sections to study some questions in graph energy. In particular,
we propose a question on the relation between the energy of several regular graphs and their joined
union. Some notable results in this section are Theorem 4.5 and Theorem 4.6 where we provide
some concrete evidence for our question.

Remark 1. We remark that a weaker form of Theorem 3.2 has been discussed previously in
[2, 19]. We refer the reader to Remark 3 and Remark 4 regarding our approach. We explain in
these remarks why our approach is more flexible than [2, 19] and why we can apply main results
in the situations where [2, 19] cannot be applied directly.

2. Normal matrices with constant row sums

We start with a definition.

Definition 1. Let A = (aij)i,j be an n × n matrix with complex coefficients. We say that A is
rA-row regular if the sum of all entries in each row of A is equal to rA, namely

∀1 ≤ i ≤ n,
n∑
j=1

aij = rA.

Similarly, we say that A is cA-column regular if the sum of all entries in each column of A is equal
to cA.

Remark 2. Some authors use the term “semimagic squares” for matrices that are both rA-regular
and cA-regular and rA = cA (see, for example [13].)

We note that if A is both rA-row regular and cA-column regular then rA = cA as long as we
work with matrices with coefficients in R or C (or more generally, over a field of characteristics 0).
This can be seen by observing that the sum of all entries in A is equal to both nrA and ncA; and
therefore rA = cA. Here is a simple criterion for row and column regularity.

Lemma 2.1. Let v = 1n = (1, 1, . . . , 1)t ∈ Cn. Then A is rA-row regular if and only if v is an
eigenvector of A associated with the eigenvalue rA. Similarly, A is cA-column regular if and only
if vt is a left eigenvector of A associated with the eigenvalue cA.

Proof. Obvious from the definition. �

Definition 2. Let A ∈Mn(C) be a matrix of size n× n. We say that A is normal if AA∗ = A∗A.
Here A∗ is the conjugate transpose of A.

A special property of normal matrices is that they are always diagonalizable by an orthonormal
basis of eigenvectors.

Theorem 2.1. (see [10, Theorem 2.5.3]) Suppose A is a normal matrix. Then its eigenspaces
span Cn and are pairwise orthogonal with respect to the standard inner product on Cn .

A direct corollary of theorem is the following.

Corollary 2.1.1. Suppose that A is both normal and rA-row regular. Then there exists an or-
thonormal basis {vA1 , vA2 , . . . , vAn } of eigenvectors of A associated with the eigenvalues {λA1 , λA2 , . . . , λAn }
such that vA1 = 1√

n
1n = 1√

n
(1, . . . , 1)t ∈ Cn. In particular, rA = λA1 and, for 2 ≤ k ≤ n, the stan-

dard inner product 〈vA1 , vAk 〉 = 0.
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Another corollary is the following.

Corollary 2.1.2. If A is both normal and rA-row regular. Then A is also rA-column regular. In
particular, A is a semimagic square matrix.

Proof. Let {vA1 , vA2 , . . . , vAn } be the system of orthonormal eigenvectors of A associated with the
eigenvalues {rA, λA2 , . . . , λAn } as described in Corollary 2.1.1. Let V = (vA1 , v

A
2 , . . . , v

A
n ) be the n×n

matrix formed by this system of eigenvectors and let D = diag(rA, . . . , λ
A
n ) be the digonal matrix

of corresponding eigenvalues. We then have AV = V D. Since {vA1 , vA2 , . . . , vAn } is an orthonormal
basis, we have V V ∗ = V ∗V = In, and hence V ∗ = V −1. Therefore, we can rewrite the equation
AV = V D as

(V ∗)A = DV ∗.

This shows that the rows of V ∗, namely {(vA1 )∗, (vA2 )∗, . . . , (vAn )∗} form a system of orthnormal left
eigenvectors for A associated with the eigenvalues {rA, λA2 , . . . , λAn }. We conclude that the column
sums of A are equal to λA1 = rA as well.

�

3. Joins of normal matrices with constant row sums

Let d, k1, k2, . . . , kd ∈ N \{0}, and set n = k1 +k2 +. . .+kd. Thus kd = (k1, . . . , kd) is a partition
of n into d non-zero summands. Following [18], we shall consider n × n matrices of the following
form

A =


A1 a121 · · · a1d1
a211 A2 · · · a2d1

...
...

. . .
...

ad11 ad21 · · · Ad

 , (∗)

where, for each 1 ≤ i, j ≤ d, Ai is a normal, rAi-row regular matrix of size ki × ki with complex
entries, and ai,j1 is a ki × kj matrix with all entries equal to a constant ai,j ∈ C. These matrices
will be called kd-joins of normal row regular (NRR for short) matrices.

For each 1 ≤ i ≤ d, let {vAi
1 , vAi

2 , . . . , vAi

ki
} and {λAi

1 , λAi
2 , . . . , λAi

ki
} be the set of eigenvectors and

eigenvalues of Ai as described in Corollary 2.1.1. The next proposition is a direct generalization
of [18, Proposition 10]. Before stating it, let us introduce the convenient notation

(x1, . . . , xm)T ∗(y1, . . . , yn)T = (x1, . . . , xm, y1, . . . , yn)T .

For more vectors, we can define ∗ inductively.

Proposition 3.1. For each 1 ≤ i ≤ d and 2 ≤ j ≤ ki let

wi,j = ~0k1 ∗ . . . ∗~0ki−1
∗ vAi

j ∗~0ki+1
∗ . . . ∗~0kd .

Then wi,j is an eigenvector of A associated with the eigenvalue λAi
j .

Proof. By direct inspection, the key property being that, for 1 ≤ ` ≤ d, ` 6= i and 2 ≤ j ≤ ki,
〈a`,i1ki , v

Ai
j 〉 = 0, according to Corollary 2.1.1.

�

We will refer to the wi,j ’s and to the associated eigenvalues λAi
j as the old NRR eigenvectors

and eigenvalues of A. Let λ1, λ2, . . . λd be the (not necessarily distinct) remaining eigenvalues of
A.
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Definition 3. The reduced characteristic polynomial of A is

pA(t) =

d∏
i=1

(t− λi) =
pA(t)∏

1≤i≤d,
2≤j≤ki

(t− λAi
j )

=
pA(t)∏d
i=1

pAi
(t)

t−rAi

.

We will now describe pA(t) as the characteristic polynomial of the matrix

A =


rA1

a12k2 · · · a1dkd
a21k1 rA2 · · · a2dkd

...
...

. . .
...

ad1k1 ad2k2 · · · rAd

 .

For a vector w = (x1, . . . , xd) ∈ Cd, we define

w⊗ = (x1, . . . , x1︸ ︷︷ ︸
k1 terms

, . . . , xd, . . . , xd︸ ︷︷ ︸
kd terms

)t ∈ Cn (3.1)

Theorem 3.2. The reduced characteristic polynomial of A coincides with the characteristic poly-
nomial of A, namely

pA(t) = pA(t).

In other words
pA(t) = pA(t)

∏
1≤i≤d,
2≤j≤ki

(t− λAi
j ).

Proof. Firstly, we note that, by construction, for any v ∈ Cd and any λ ∈ C[
(A− λI)v

]⊗
= (A− λI)v⊗. (3.2)

Let λ be an eigenvalue of A, and let w = (x1, . . . , xd) be an associated generalized eigenvector,
satisfying (A − λId)

mw = 0 for a suitable m. We will show, by induction on m, that (A −
λIn)mw⊗ = 0. If m = 1, the assertion is a consequence of Equation (3.2). If m > 1, consider
the vector w′ = (A − λId)w, which satisfies (A − λId)

m−1w′ = 0. By induction hypothesis,

(A− λIn)m−1(w′)
⊗

= 0, therefore, thanks to Equation (3.2),

(A− λIn)mw⊗ = (A− λIn)m−1
(
(A− λIn)w⊗

)
= (A− λI)m−1(w′)⊗ = 0.

In other words, the generalized eigenspaces of A lift to (direct summands of) generalized eigenspaces
of A. Now we observe that the NRR eigenvectors of A, together with the generalized eigenvectors
of A of the shape w⊗, w ∈ Cd, form a linearly independent set thanks to Corollary 2.1.1. Hence,
by dimension counting, the eigenvalues of A are precisely the eigenvalues λ1, . . . , λd of A, with the
correct multiplicity. Equivalently, pA(t) = pA(t). �

Remark 3. After proving Theorem 3.2, we learned from ResearchGate that a special form of this
theorem has been proved in [19, Theorem 2.1] and [2, Theorem 3]. We would like to take this
chance to clarify the similarities and differences between our approaches. First, both our methods
investigate the “broadcasting” mechanism to lift eigenvalues and eigenvectors from Ā to A as
described by Eq. (3.1) (this broadcasting procedure has a physical interpretation as we explained
in our work [16].) If A is symmetric, then A is diagonalizable and hence Ā is diagonalizable as
well. In this case, [19, Theorem 2.1] only needs to deal with eigenvalues. Our method shows that
the broadcasted solution described by Eq. (3.1) even works at the level of generalized eigenvalues.
In other words, it even works for the cases where either A is not diagonalizable or A is not a
symmetric matrix. This is important for applications because many networks in the Kuramoto
models are directed.
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Remark 4. We discuss a generalization of Theorem 3.2. More precisely, we can show that Theo-
rem 3.2 holds for any field F under the mild assumption that ki is invertible in F for all 1 ≤ i ≤ d.
In particular, we can drop the “normal” condition on Ai. First, we recall from Remark 2 that a
k1 × k1 matrix A1 with entries in a field F is called a semimagic square if A1 is both rA1

-regular
and cA1

-regular and cA1
= rA1

. If k1 is invertible in F , then F k1 can be decomposed into

F k1 = F1k1 ⊕W1. (3.3)

Here F1k1 is the one dimensional vector space generated by 1k1 and W1 is the set of all vec-

tors (x1, x2, . . . , xk1) ∈ F k1 such that
∑k1
i=1 xi = 0. We can check that each component of this

decomposition is stable under A1 for any semimagic square A1. Now suppose that A is the join of
d semimagic squares Ai of sizes ki × ki as defined in equation ∗. We assume that further that ki
is invertible in the field F . Let Wi be the decomposition

F ki = F1ki ⊕Wi.

We see that for 1 ≤ i ≤ d
Ŵi = {~0k1 ∗ . . . ∗~0ki−1

∗ vi ∗~0ki+1
∗ . . . ∗~0kd |vi ∈Wi},

is an A-stable subpsace of F ki . By the same proof as explained in Theorem 3.2, we can see that

pA(t) = pA(t). (3.4)

We also note that the set of all such A with coefficients in any ring R has the structure of a ring
(the case d = 1 was considered in [13]). By the same method described in the proof of [3, Theorem
3.16], we could describe the structure of this ring and derive Equation 3.4 as a direct consequence.
We could show, in particular, that the map A 7→ Ā is a ring homomorphism.

4. Applications to spectral graph theory

4.1. Spectrum of the join of regular graphs. In this section, we apply Theorem 3.2 to give
new proofs for Theorem 2.1.8 and Theorem 2.1.9 in [6]. Let G1, G2, . . . , Gd be undirected regular
graphs such that Gi has degree ri and ki vertices. Let G be the join graph of G1, G2, . . . , Gd, which
we will denote by G = G1 +G2 + . . .+Gd. We recall that G is obtained from the disjoint union of
G1, . . . , G2, . . . , Gd by joining each vertex Gi with each vertex in all others Gj for j 6= i (see [18,
Section 4] and the reference therein for further details). Let Ai be the adjacency matrix of Gi for
1 ≤ i ≤ d and A be the adjacency matrix of G. By definition of the join of graphs, the adjacency
matrix A of G has the following form

A =


A1 1 · · · 1
1 A2 · · · 1
...

...
. . .

...
1 1 · · · Ad

 .

Since Gi is an undirected graph, Ai is real and symmetric, hence normal. Furthermore, since Gi is
regular of degree ri, Ai is ri-row regular. By Theorem 3.2, the reduced characteristics polynomial
of A is given by

pA(t) = pA(t),

where

A =


r1 k2 · · · kd
k1 r2 · · · kd
...

...
. . .

...
k1 k2 · · · rd

 .
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In summary, we have

Proposition 4.1. The characteristic polynomial of A is given by

pA(t) = pA(t)

∏d
i=1 pAi

(t)∏d
i=1(t− ri)

.

Let us consider some special cases of this proposition.

Corollary 4.1.1. (See [6, Theorem 2.1.8]) If G1 is r1-regular with k1 vertices and G2 is r2-regular
with k2 vertices then the characteristic polynomial of the join G1 +G2 is given by

pG1+G2
(t) =

pG1
(t)pG2

(t)

(t− r1)(t− r2)
((t− r1)(t− r2)− k1k2) .

Proof. Let A1, A2 be the adjacency matrix of G1, G2 respectively. Then, the adjacency matrix of
G1 +G2 is

A =

(
A1 1
1 A2

)
.

We have

A =

(
r1 k2

k1 r2

)
.

Hence

pA(t) = (t− r1)(t− r2)− k1k2.

By Proposition 3.1, we conclude that

pG1+G2(t) =
pG1

(t)pG2
(t)

(t− r1)(t− r2)
((t− r1)(t− r2)− k1k2) .

�

Corollary 4.1.2. (See [6, Theorem 2.1.9] Let Gi be ri-regular with ki vertices. Assume further
that

k1 − r1 = k2 − r2 = . . . = kd − rd = s.

Let G be the join graph of G1, G2, . . . , Gd. Let

n = k1 + k2 + . . .+ kd,

and

r = n− s.

Then

(1) G is r-regular with n vertices.
(2) The characteristic polynomial of G is given by

pG(t) = (x− r)(x+ s)d−1

∏d
i=1 pGi(t)∏d
i=1(t− ri)

.

Proof. Let vi be a vertex in Gi. By definition, the degree of vi in G is given by

degGi
(vi) + (n− ki) = n− (ki − ri) = n− s = r.
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We conclude that G is r-regular. This proves part (1). For part (2), we note that if A is the
adjacency matrix of G then A is given by

A =


r1 k2 · · · kd
k1 r2 · · · kd
...

...
. . .

...
k1 k2 · · · rd

 .

We observe that

A+ sId =


k1 k2 · · · kd
k1 k2 · · · kd
...

...
. . .

...
k1 k2 · · · kd


has rank 1. Consequently, −s is an eigenvalue of A with multiplicity at least d− 1. Additionally,
by part (1), G is r-regular, hence λ = r is the remaining eigenvalue of A. Consequently,

pA(t) = (t− r)(t+ s)d−1.

By Proposition 4.1, we conclude that

pG(t) = (t− r)(t+ s)d−1

∏d
i=1 pGi(t)∏d
i=1(t− ri)

.

�

4.2. A simple construction of Ramanujan graphs. We discuss some applications of Corollary
4.1.2 to the construction of Ramanujan graphs. We first recall the definition of these graphs (see
[6, Chapter 3] and [14] for further details.) We also recommend [9] for a beautiful survey of some
surprising applications and occurrence of Ramanujan graphs in various parts of mathematics,
physics, communications networks and computer science.)

Definition 4. (see [6, Definition 3.5.4]) Let G be a connected r-regular graph with k vertices, and
let r = λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of G. Since G is connected
and r-regular, its eigenvalues satisfy |λi| ≤ r, 1 ≤ i ≤ n. Let

λ(G) = max
|λi|<r

|λi|.

The graph G is a Ramanujan graph if

λ(G) ≤ 2
√
r − 1.

The following proposition provides a construction of Ramanujan graphs.

Proposition 4.2. Let d ≥ 2 and, for 1 ≤ i ≤ d, let Gi be ri-regular Ramanujan graphs with ki
vertices. Suppose further that the Gi’s satisfy the same conditions as in Corollary 4.1.2, namely

k1 − r1 = k2 − r2 = . . . = kd − rd = s.

Let G be the join graph of G1, G2, . . . , Gd and n = k1 + k2 + . . . + kd. Then G is a Ramanujan
graph if and only if

s ≤ 2(
√
n− 1).

Proof. Corollary 4.1.2 describes the eigenvalues of G. Taking into account that the valency r of G
is greater than the valency ri of each Gi, and that each Gi is Ramanujan, G is Ramanujan if and
only if s ≤ 2

√
r − 1 = 2

√
n− s− 1, if and only if s2+4s−4n+4 ≤ 0, if and only if s ≤ 2

√
n−2. �

Here is a special case of this construction.
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Corollary 4.2.1. Let G be a r-regular graph with k vertices. Let Gd be the join graph of d identical
copies of G. Then there exists a natural number d0 such that for all d ≥ d0, G

d is a Ramanujan
graph.

Proof. By Proposition 4.2, Gd is a Ramanujan graph if and only if

k − r ≤ 2(
√
dk − 1).

This is equivalent to

d ≥ 1

k

(
k − r

2
+ 1

)2

.

We therefore can take

d0 =

⌈
1

k

(
k − r

2
+ 1

)2
⌉
.

�

4.3. Spectrum of the joined union of graphs. Let G be a graph with d vertices {v1, v2, . . . , vd}.
Let G1, G2, . . . , Gd be graphs. The joined union G[G1, G2, . . . , Gd] is obtained from the union of
G1, . . . , Gd by joining with an edge each pair of a vertex from Gi and a vertex from Gj whenever
vi and vj are adjacent in G (see [19] for further details). Let AG = (aij) be the adjacency matrix
of G and A1, A2, . . . , Ad be the adjacency matrices of G1, G2, . . . , Gd respectively. The adjacency
matrix of G[G1, G2, . . . , Gd] has the following form

A =


A1 a121 · · · a1d1
a211 A2 · · · a2d1

...
...

. . .
...

ad11 ad21 · · · Ad

 . (4.1)

Remark 5. When G = Kd, the complete graph on d vertices, G[G1, G2, . . . , Gd] is exactly the
join graph of G1, G2, . . . , Gd discussed in Section 4.1.

By Theorem 3.2, the spectrum of G[G1, G2, . . . , Gd] can be described by the spectra of Gi and an
auxiliary matrix describing the interconnections between Gi. More precisely, we have the following
proposition.

Proposition 4.3. Assume that for each 1 ≤ i ≤ d, Gi is a ri-regular graph with ki nodes. Let
G[G1, G2, . . . , Gd] be the joined union graph. Let {λGi

1 = ri, . . . , λ
Gi

ki
} be the spectrum of Gi as

described in Corollary 2.1.1. Then the spectrum of A is the union of Spec(A) and the following
multiset

{λAi
j }1≤i≤d,2≤j≤ki .

Here A is the following d× d matrix, whose entries are the row sums of the blocks in the matrix
A

A =


rA1

a12k2 · · · a1nkd
a21k1 rA2

· · · a2nkd
...

...
. . .

...
ad1k1 ad2k2 · · · rAd

 .

Proof. This proposition follows from Theorem 3.2. To see this, we recall that the adjacency matrix
of G[G1, G2, . . . , Gd] has the form described in Eq. (4.1) where AG is the adjacency matrix of G and
A1, A2, . . . , Ad are the adjacency matrices of G1, G2, . . . , Gd respectively. Since Gi is an undirected
graph, we know that Ai is symmetric. Furthermore, by our assumption, Gi is ri-regular, Ai is
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a normal, row regular with ri = rAi
. Therefore, we can apply Theorem 3.2 to obtain the above

description for the spectrum of A. �

Let us consider another special case where the Gi are all r-regular graphs with k vertices. In
this case, we have k1 = k2 = . . . = kd = k and rA1

= rA2
= . . . = rAd

= r. Therefore, by
Proposition 4.3, we have the following.

Proposition 4.4. Assume that for each 1 ≤ i ≤ d, Gi is a r-regular graph with k vertices. Let
G[G1, G2, . . . , Gd] be the joined union graph. Let {λGi

1 = r, . . . , λGi

ki
} be the spectrum of Gi as

described in Corollary 2.1.1. Then the spectrum of A is the union the multiset

{λAi
j }1≤i≤d,2≤j≤ki ,

and the following multiset
{r + kσ|σ ∈ Spec(AG)}.

Proof. In this case, the matrix A is of the following form

A = rId + kAG,

where AG is the adjacency matrix of G. Thus the spectrum of A consists of the roots of the
characteristic polynomial

pA(t) = det(tId − rId − kAG).

Therefore, the spectrum of A is given by r + k Spec(AG). �

4.4. Energy of the joined union of graphs. The concept of graph energy originates from
problems in theoretical chemistry. Specifically, the mathematical definition of graph energy was
inspired by early studies on the total π-electron energy of molecules represented by molecular
graphs (see [5, 12, 7]). Interest in graph energy remained relatively dormant until around 2000,
when a small group of mathematicians mutually found their interest in this topic, leading to an
explosion of research. For a more detailed discussion on the historical development of graph energy,
we refer the reader to the survey article [8].

Our interest in this topic arises from our experimental observation that the graph energy seems
to increase when we apply the join operation on graphs. The goal of this section is to formalize
this observation and propose a precise question about the relationship between the energy of the
joined union of graphs and the energy of individual graphs (see Question 1).

We first recall the definition of energy of a graph.

Definition 5. Let G be a graph with d nodes. Suppose that

Spec(G) = {λ1, λ2, . . . , λd}.
The energy of G is defined to be the following sum (see [6, Section 9.2.2] for further discussions.)

E(G) =

d∑
i=1

|λi|.

Example 1. If G = Kd the complete graph with d vertices. Then

Spec(G) = {[−1]d−1, [d− 1]1},
where [a]m means that a has multiplicity m. We conclude that the energy of Kd is 2(d− 1).

Let Gi and G be as at the beginning of Section 4.1, namely

G = G1 +G2 + . . .+Gd = Kd[G1, G2, . . . , Gd].

We have the following inequality.
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Theorem 4.5. The energy of G is strictly larger than the sum of the energy of Gi:

E(G) >

d∑
i=1

E(Gi).

Proof. Let {λ1, λ2, . . . , λd} be the eigenvalues of A where A and A are the matrices defined at the
beginning of Section 4.1, namely

A =


r1 k2 · · · kd
k1 r2 · · · kd
...

...
. . .

...
k1 k2 · · · rd

 .

Note that λi ∈ R as they are also eigenvalues of A, which is real and symmetric. By Proposition
4.1, we have

E(G)−
d∑
i=1

E(Gi) =

d∑
i=1

|λd| −
d∑
i=1

ri.

We also note that
∑d
i=1 λi = Tr(A) =

∑d
i=1 ri. Therefore, we have

E(G)−
d∑
i=1

E(Gi) =

d∑
i=1

(|λi| − λi) = 2
∑
λi<0

|λi|.

Hence, to show that E(G) >
∑d
i=1E(Gi), we only need to show that for some i, λi < 0.

Let si = ki − ri > 0. Without loss of generality, we can assume that

k1 − r1 ≤ k2 − r2 ≤ . . . ≤ kd − rd.
Let us consider

pA(−s1) = pA(r1 − k1) = det((r1 − k1)−A)

= (−1)d det


k1 k2 · · · kd
k1 r2 + k1 − r1 · · · kd
...

...
. . .

...
k1 k2 · · · rd + k1 − r1



= (−1)dk1 det


1 k2 · · · kd
1 r2 + k1 − r1 · · · kd
...

...
. . .

...
1 k2 · · · rd + k1 − r1

 .

By adding −ki times the first column to the i-th column, we see that the later determinant is also
equal to

det


1 0 · · · 0
1 (k1 − r1)− (k2 − r2) · · · 0
...

...
. . .

...
1 0 · · · (k1 − r1)− (kd − rd)

 = (s1 − s2)(s1 − s3) . . . (s1 − sd).

We conclude that

pA(−s1) = (−1)dk1

∏
j 6=1

(s1 − sj) = −k1

∏
j 6=1

(sj − s1) ≤ 0.
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By the same argument, we see that

pA(−s2) = −k2

∏
j 6=2

(sj − s2) = k2(s2 − s1)
∏
j>2

(sj − s2) ≥ 0.

By the mean value theorem, pA(t) has a real root on the interval [−s2,−s1]. In particular, at least

one eigenvalue of A must be negative. This completes the proof. �

Definition 6. A graph G with d nodes is called hyperenergetic if E(G) ≥ 2(d− 1).

Theorem 4.6. Assume that Gi are all r-regular with k vertices. Assume further that G is hyper-
energetic. Then

E(G[G1, G2, . . . , Gd]) ≥ E(G) +

d∑
i=1

E(Gi).

The equality can happen, for example when G and Gi are all complete graphs.

Proof. Let A be the adjacency matrix of G[G1, G2, . . . , Gd]. Then the matrix A in Proposition 4.3
has the following form

A =


r a12k · · · a1nk

a21k r · · · a2nk
...

...
. . .

...
ad1k ad2k · · · r

 = rId + kAG.

Let Spec(AG) = {λ1, λ2, . . . , λd} then

Spec(A) = {r + kλ1, r + kλ2, . . . , r + kλd}.

By Proposition 4.3, we have

E(G[G1, G2, . . . , Gd])− E(G)−
d∑
i=1

E(Gi) =

d∑
i=1

|r + kλi| −
d∑
i=1

|λi| − dr.

We note that by the Perron-Frobenius Theorem, one of the eigenvalues of AG must be real and
non-negative. Let us assume λ1 ≥ 0. We then have

d∑
i=1

|r + kλi| = r + kλ1 +

d∑
i=2

|r + kλi|

≥ r + kλ1 +

d∑
i=2

(k|λi| − r)

≥ k
d∑
i=1

|λi| − (d− 2)r.

Consequently, we have

E(G[G1, G2, . . . , Gd])− E(G)−
d∑
i=1

E(Gi) ≥ (k − 1)

d∑
i=1

|λi| − 2(d− 1)r

≥ r(
d∑
i=1

|λi| − 2(d− 1))

≥ 0.
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Note that the second inequality follows from k ≥ r + 1 and the last inequality follows from the
assumption that G is hyperenergetic. �

Remark 6. The above proof can be slightly generalized as follows. Suppose thatG is an undirected
graph and the spectrum of G consists of n negative eigenvalues and p non-negative eigenvalues.
Suppose that the energy of G satisfies

E(G) ≥ d+ n− p = 2(d− p). (4.2)

Then we have

E(G[G1, G2, . . . , Gd]) ≥ E(G) +

d∑
i=1

E(Gi).

We checked that all undirected graphs with at most 3 nodes satisfy the Inequality 4.2.

Question 1. Suppose that Gi are all regular graphs. Does the following inequality hold in general?

E(G[G1, G2, . . . , Gd]) ≥ E(G) +

d∑
i=1

E(Gi)? (4.3)

We provide an answer to this question in a special case, namely for d = 2.

Proposition 4.7. Let G1, G2 be two regular graphs and G be a graph with 2 nodes. Then

E(G[G1, G2]) ≥ E(G) + E(G1) + E(G2).

Proof. If G is the cocomplete graph, we have

E(G[G1, G2]) = E(G) + E(G1) + E(G2).

Suppose now that G = K2 the complete graph on 2 nodes. The energy of G is E(G) = 2. Suppose
that Gi is ri regular with ki vertices for i ∈ {1, 2}. Let λ1, λ2 be the eigenvalues of A where

A =

(
r1 k2

k1 r2

)
.

By Proposition 4.1 we have

E(G[G1, G2])− E(G1)− E(G2) = |λ1|+ |λ2| − (r1 + r2).

We conclude that

λ1, λ2 =
(r1 + r2)±

√
(r1 − r2)2 + 4k1k2

2
.

We have det(A) = r1r2 − k1k2 < 0 so one root of A is negative and the other is positive.
Consequently

|λ1|+ |λ2| − r1 − r2 =
√

(r1 − r2)2 + 4k1k2 − (r1 + r2)

≥
√

(r1 − r2)2 + 4(r1 + 1)(r2 + 1)− (r1 + r2)

≥ (r1 + r2 + 2)− (r1 + r2) = 2.

In other words, we have

E(G[G1, G2]) ≥ E(G) + E(G1) + E(G2).

�

Another situation where we can verify Inequality 4.3 is the following.
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Proposition 4.8. Let Gi be ri-regular with ki vertices. Assume further that

k1 − r1 = k2 − r2 = . . . = kd − rd = s.

Let G be the joined union graph Kd[G1, G2, . . . , Gd]. Then

E(Kd[G1, G2, . . . , Gd]) ≥ E(Kd) +

d∑
i=1

E(Gi).

Proof. Let k =
∑d
i=1 ki. By Corollary 4.1.2, we have

E(Kd[G1, G2, . . . , Gd])− E(Kd)−
d∑
i=1

E(Gi)

= (k − s) + (d− 1)s− 2(d− 1)−
d∑
i=1

ri

=

d∑
i=1

(ki − ri)− s+ (d− 1)(s− 2)

= ds− s+ (d− 1)(s− 2) = 2(d− 1)(s− 1) ≥ 0.

Consequently

E(Kd[G1, G2, . . . , Gd]) ≥ E(Kd) +

d∑
i=1

E(Gi).

�

Proposition 4.9. Let Gi be ri-regular with ki vertices. Let si = ki − ri Assume further that

s1 < s2 < . . . < sd.

Let G be the joined union graph Kd[G1, G2, . . . , Gd]. Then

E(Kd[G1, G2, . . . , Gd]) ≥ 2

d−1∑
i=1

si +

d∑
i=1

E(Gi).

In particular, if d ≥ 2 then

E(Kd[G1, G2, . . . , Gd]) > E(Kd) +

d∑
i=1

E(Gi).

Proof. Let {λ1, λ2, . . . , λd} be the eigenvalues of A where A and A are the matrices in Proposition
4.1, namely

A =


r1 k2 · · · kd
k1 r2 · · · kd
...

...
. . .

...
k1 k2 · · · rd

 .

By the same argument as in Proposition 4.5, we have

pA(−si) = −ki
∏
j 6=i

(sj − si).
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Because of the total ordering s1 < s2 < . . . < sd, we see that pA(−si)pA(−si+1) < 0 for 1 ≤ i ≤
d − 1. By the mean value theorem, pA(t) has a real root, say λi, in the interval [−si+1,−si]. In
particular, λi < 0 and |λi| ≥ si for 1 ≤ i ≤ d− 1. We also note that

d∑
i=1

λi = Tr(A) =

d∑
i=1

ri.

Hence

λd =

d∑
i=1

ri −
d−1∑
i=1

λi > 0.

We then have

E(Kd[G1, G2, . . . , Gd])−
d∑
i=1

E(Gi) =

d∑
i=1

|λi| −
d∑
i=1

ri

=

d−1∑
i=1

|λi|+

(
d∑
i=1

ri −
d−1∑
i=1

λi

)
−

d∑
i=1

ri

= 2

d−1∑
i=1

|λi| ≥ 2

d−1∑
i=1

si.

Since 1 ≤ s1 < s2 < . . . < sd, the above inequality implies that

E(Kd[G1, G2, . . . , Gd])−
d∑
i=1

E(Gi) > 2(d− 1) = E(Kd).

�
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ometry unites synchrony, chimeras, and waves in nonlinear oscillator networks, Chaos, 32(3): Paper No. 031104,
7, 2022.

[2] CARDOSO, D. M.—AGUIEIRAS, M. A. DE FREITAS—MARTINS, E. A.—ROBBIANO, M.: Spectra of graphs
obtained by a generalization of the join graph operation, Discrete Math., 313(5):733–741, 2013.
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